Tool
- Host Computer Ubuntu18
- download SDKManager from nvidia
- usb connected
- Jetson and Host connected in the same router
- Enter recorver mode (connect ground and REC pin 2, pin3)
- Power ON (J48 need connect)
OS
- Jetpack 4.6.1
- Develop Tools(Cuda , cudnn …)
- Select max Power Mode after OS installed
- Start fan
sudo sh -c 'echo 255 >/sys/devices/pwm-fan/target_pwm'
Yolo Dependence
- first go to
https://forums.developer.nvidia.com/t/pytorch-for-jetson-version-1-10-0-now-available/72048 and download pytorch1.9.0 file torch-1.9.0-cp36-cp36m-linux_aarch64.whl - download torchvision0.10.0
git clone --branch 0.10.0 https://github.com/pytorch/vision torchvision - Install source dependence
sudo apt-get install libblas3 liblapack3 liblapack-dev libblas-dev gfortran libatlas-base-dev
sudo apt-get install libjpeg-dev zlib1g-dev libpython3-dev libavcodec-dev libavformat-dev libswscale-dev
sudo apt-get install libfreetype6-dev
sudo apt-get install python3-pip libopenblas-base libopenmpi-dev
pip3 install setuptools -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install Cython -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install numpy -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install Pillow -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install sklearn -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install serial -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install networkx -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install tqdm -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install seaborn -i https://pypi.tuna.tsinghua.edu.cn/simple
- Install pytorch1.9.0 and torchvision0.10.0 from source
pip3 install torch-1.9.0-cp36-cp36m-linux_aarch64.whl
$ cd torchvision
$ export BUILD_VERSION=0.10.0
$ python3 setup.py install --user
$ cd ../
$
docker experiment
just for fun
sudo docker pull nvcr.io/nvidia/l4t-ml:r32.6.1-py3
sudo docker run -it --gpus all -v /home/nano/yolov5-face-master/:/yolov5 -e DISPLAY=:0 -v /tmp/.X11-unix:/tmp/.X11-unix nvcr.io/nvidia/l4t-ml:r32.6.1-py3
|