IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 传统模型预测控制轨迹跟踪——圆形轨迹 -> 正文阅读

[人工智能]传统模型预测控制轨迹跟踪——圆形轨迹

目录

简介

思路

模型介绍及优化过程

ROS环境仿真

一、路径发送

二、路径跟踪

1.自定义消息类型

2.自定义服务类型

3.MPC控制器服务端的python程序

4.MPC客户端C++程序

三、rviz设置

四、launch文件

五、仿真结果

六、附加

总结


简介

????????之前的博客提到过python调用osqp库的具体操作步骤,则该博客采用osqp库写MPC程序,对给定圆形轨迹进行跟踪,不使用mpc_local_planner。

思路

执行该轨迹跟总任务的思路如下:

step1. /send_point节点通过自定义话题(/path_point_pose)发送圆形轨迹到/mpc_track_node节点,同时发送/path_point到rviz上显示出轨迹

step2.通过计算后得到速度(/cmd_vel),并计算虚拟小车位置(/visualization_pose),发送到rviz上显示

在step2中,/mpc_track_node仅执行接收路径点,搜寻目标点,发送小车位置、速度信息等功能,真正的mpc优化程序是服务/mpc_optimization

模型介绍及优化过程

网络上已经有太多解释了,这里就不再赘述,大家可以去这篇博客中了解,《无人驾驶之车辆控制 (2)MPC模型预测控制算法》

本博客中模型预测控制采用的是运动学模型,从状态空间模型到线性化过程再到离散化,它的离散化过程就是使用简单的一阶差分法:

\tilde{X }(k) = \frac{\tilde{X}(k+1)-\tilde{X}(k)}{T}

移项后得到:

\tilde{X} \left ( k+1 \right ) = A\tilde{X} (k) + B\tilde{u}

\tilde{X } = \begin{bmatrix} x-x_r & y-y_r & \varphi -\varphi _{r} \end{bmatrix}^{T},? ?\tilde{u} = \begin{bmatrix} v-v_{r} & \omega -\omega_{r} \end{bmatrix}^{T}

A=\begin{bmatrix} 1&0&-Tv_{r}sin\varphi _{r}\\ 0&1&Tv_{r}cos \varphi _{r}\\ 0&0 &1 \end{bmatrix}B=\begin{bmatrix} T\cos\varphi _{r} &0 \\ T\sin\varphi _{r}&0 \\ 0& T \end{bmatrix}.

ROS环境仿真

一、路径发送

我创建了一个专门用来发送路径的功能包,为了以后路径规划做准备(示例中为path_planning)

程序实现的功能是根据运动学计算出一个圆形轨迹,发送两个话题:

/path_point_pose用于给跟踪节点传递路径

/path_point用于给rviz显示轨迹

直接上程序:

send_point.cpp,放到功能包的src下

#include <ros/ros.h>
#include <ros/console.h>
#include <nav_msgs/Path.h>
#include <std_msgs/String.h>
#include <std_msgs/Int16.h>
#include <geometry_msgs/Quaternion.h>
#include <geometry_msgs/PoseStamped.h>
#include <tf/transform_broadcaster.h>
#include <tf/tf.h>
#include <math.h>

#define pi acos(-1)
#define dt  0.01
#define freq  100  //发布频率  10 20 30
//创建机器人信息的结构体
typedef struct robot{
 double x,y,th;
}robot;

typedef struct robot_a{
 double vx,vy,vth;
}robot_a;

//定义状态更新函数
robot state(robot &robot,robot_a &robot_a)
{
    double delta_x = (robot_a.vx * cos(robot.th) - robot_a.vy * sin(robot.th)) * dt;
    double delta_y = (robot_a.vx * sin(robot.th) + robot_a.vy * cos(robot.th)) * dt;
    double delta_th = robot_a.vth * dt;
    robot.x += delta_x;
    robot.y += delta_y;
    robot.th += delta_th;	
    return robot;
}


class path_produce
{
private:
	ros::NodeHandle nh;
	ros::Publisher path_pub;
	ros::Publisher path_point_pub;
	robot robot_now;
	robot_a robot_a_now;
	nav_msgs::Path path;
	geometry_msgs::PoseStamped this_pose_stamped;
	std_msgs::Int16 ID;


public:
	path_produce(ros::NodeHandle& nh,robot& robot_,robot_a& robot_a_)
	{
	    path_pub = nh.advertise<nav_msgs::Path>("/path_point",10000000, true);
	    path_point_pub=nh.advertise<geometry_msgs::PoseStamped>("/path_point_pose",10000000,true);
	    robot_now=robot_;
	    robot_a_now=robot_a_;
	    ID.data=0;
	}
	
	void PUB()
	{	
	    path.poses.push_back(this_pose_stamped);
	    path_pub.publish(path);
	    path_point_pub.publish(this_pose_stamped);	   
	}

	void path_publisher()
	{
	    ID.data+=1;
	    this_pose_stamped.header.seq=ID.data;
	    ROS_INFO("robot's id is %d",ID.data);
	    this_pose_stamped.pose.position.x = robot_now.x;
	    this_pose_stamped.pose.position.y = robot_now.y;
	    geometry_msgs::Quaternion goal_quat = tf::createQuaternionMsgFromYaw(robot_now.th);
	    this_pose_stamped.pose.orientation.x = goal_quat.x;
	    this_pose_stamped.pose.orientation.y = goal_quat.y;
	    this_pose_stamped.pose.orientation.z = goal_quat.z;
	    this_pose_stamped.pose.orientation.w = goal_quat.w;
	    PUB();
	    ROS_INFO("the Euler yaw is :%f", robot_now.th);
	    robot_now=state(robot_now,robot_a_now);
	}

	void control()
	{
	    ros::Rate loop_rate(freq);
	    path.header.frame_id="map";
    	    this_pose_stamped.header.stamp=ros::Time::now();
   	    this_pose_stamped.header.frame_id="map";
	    while(ros::ok())
	    {	
		while(robot_now.th<2*pi)
		//while(robot_now.x<10)
		{
		path_publisher();
		loop_rate.sleep();
		}
	    
	    }
	}
};



main (int argc, char **argv)
{
    
    ros::init (argc, argv, "send_point");

    ros::NodeHandle n;
    //定义一个机器人,初始化位置
    robot i;  
    i.x=0.0;i.y=-2.0;i.th=0.0;
    //定义机器人速度,初始化速度
    robot_a i_a;
    i_a.vx=0.5;i_a.vy=0.0;i_a.vth=0.25;

    path_produce path(n,i,i_a);
    path.control();


    return 0;
}


程序中包含了一些进阶写法,比如在类中发布,通过总控制函数运行程序等。

CMakelists.txt中的更改如下:

###########
## Build ##
###########

## Specify additional locations of header files
## Your package locations should be listed before other locations
include_directories(
# include
  ${catkin_INCLUDE_DIRS}
)

add_executable(send_point src/send_point.cpp)
target_link_libraries(send_point  ${catkin_LIBRARIES})
add_dependencies(send_point ${PROJECT_NAME}_gencpp )

最后进行编译。?

二、路径跟踪

同样的,我创建了一个专门用来轨迹跟踪的功能包(示例中为path_track)

1.自定义消息类型

建议去B站找一下自定义消息类型创建的方法,参考古月居:话题消息的定义与使用

程序中所用到的消息类型为pose.msg和pose_error.msg,我们需要在功能包内建立一个msg文件夹,里面放置这两个.msg文件

?两个.msg文件内容如下:

pose.msg

float32 x
float32 y
float32 yaw

pose_error.msg

float32 x_e
float32 y_e
float32 yaw_e

?在CmakeLists.txt中添加这两个msg:

################################################
## Declare ROS messages, services and actions ##
################################################

## Generate messages in the 'msg' folder
 add_message_files(
   FILES
   pose.msg
   pose_error.msg
#   Message2.msg
 )

2.自定义服务类型

参考古月居:服务数据的定义与使用

程序中所用到的服务为mpc.srv,向优化器传入跟踪目标点、小车位置、距离终点的距离这三个参数,返回解算的速度、角速度和小车目前动作。

mpc.srv文件如下:

path_track/pose point
path_track/pose state
float32 distance
---
float32 v
float32 w
string goal

?在CmakeLists.txt中添加这个srv:

## Generate services in the 'srv' folder
 add_service_files(
   FILES
   mpc.srv
#   Service2.srv
 )

3.MPC控制器服务端的python程序

mpc_server.py:

注意是python3的解释器,别忘了设置作为可执行程序

#!/usr/bin/env python3
# -*- coding: UTF-8 -*-
import rospy
import osqp
from path_track.srv import mpc, mpcResponse, mpcRequest  # 导入自定义服务
import numpy as np
from scipy import sparse
import math

freq = 20  # 采样频率
T = 1 / freq  # 采样周期


class slow_LVL1(Exception):  # 第一阶段减速速度
    V_DESIRED = 0.1
    W_DESIRED = 0.05


class slow_LVL2(Exception):  # 第二阶段减速速度
    V_DESIRED = 0.05
    W_DESIRED = 0.025


class slow_end(Exception):  # 停止
    V_DESIRED = 0.0
    W_DESIRED = 0.0


DISTANCE_LVL1 = 0.1  # 第一阶段安全距离

DISTANCE_LVL2 = 0.5  # 第二阶段安全距离

DISTANCE_END = 0.1  # 跟踪停止距离


def MPC_controller(state, point, vr, wr):
    # Discrete time model of a quadcopter  # 离散化模型参数
    Ad = sparse.csc_matrix([
        [1.0, 0.0, -T * vr * math.sin(point.yaw)],
        [0.0, 1.0, T * vr * math.cos(point.yaw)],
        [0, 0, 1.0]
    ])
    Bd = sparse.csc_matrix([
        [T * math.cos(point.yaw), 0.0],
        [T * math.sin(point.yaw), 0.0],
        [0, T]
    ])
    [nx, nu] = Bd.shape

    # Constraints
    # 控制输入u=[v  w]
    umin = np.array([-0.5, -0.5])  # 控制输入下限
    umax = np.array([0.5, 0.5])  # 控制输入上限
    xmin = np.array([-3.0, -3.0, -3.0])  # 控制变量下限
    xmax = np.array([3.0, 3.0, 3.0])  # 控制变量上限

    # Objective function
    Q = sparse.diags([80, 80, 1])
    QN = Q  # 权重矩阵Q
    R = 0.5 * sparse.eye(2)  # 权重矩阵R

    # Initial and reference states
    x0 = np.array([state.x - point.x, state.y - point.y, state.yaw - point.yaw])  # 状态变量初始值=小车位置-路径点位置
    xr = np.zeros(3)  # 参考状态,误差期望值[0,0,0]

    # Prediction horizon
    N = 15

    # Cast MPC problem to a QP: x = (x(0),x(1),...,x(N),u(0),...,u(N-1))
    # - quadratic objective
    P = sparse.block_diag([sparse.kron(sparse.eye(N), Q), QN,
                           sparse.kron(sparse.eye(N), R)], format='csc')
    # - linear objective
    q = np.hstack([np.kron(np.ones(N), -Q.dot(xr)), -QN.dot(xr),
                   np.zeros(N * nu)])
    # - linear dynamics 由预测层推导出的预测模型
    Ax = sparse.kron(sparse.eye(N + 1), -sparse.eye(nx)) + sparse.kron(sparse.eye(N + 1, k=-1), Ad)  # 克罗内克积 A ⊙ B
    Bu = sparse.kron(sparse.vstack([sparse.csc_matrix((1, N)), sparse.eye(N)]), Bd)
    Aeq = sparse.hstack([Ax, Bu])
    leq = np.hstack([-x0, np.zeros(N * nx)])
    # print(f'low bound is {leq}')
    ueq = leq
    # print(f'up bound is {ueq}')

    # - input and state constraints
    Aineq = sparse.eye((N + 1) * nx + N * nu)
    lineq = np.hstack([np.kron(np.ones(N + 1), xmin), np.kron(np.ones(N), umin)])
    uineq = np.hstack([np.kron(np.ones(N + 1), xmax), np.kron(np.ones(N), umax)])
    # - OSQP constraints
    A = sparse.vstack([Aeq, Aineq], format='csc')
    l = np.hstack([leq, lineq])
    u = np.hstack([ueq, uineq])

    # Create an OSQP object
    prob = osqp.OSQP()

    # Setup workspace
    prob.setup(P, q, A, l, u)

    # Simulate in closed loop
    # Solve
    res = prob.solve()

    # Check solver status
    if res.info.status != 'solved':
        raise ValueError('OSQP did not solve the problem!')
    # t.goto(x0[0], x0[1])
    # Apply first control input to the plant
    ctrl = res.x[-N * nu:-(N - 1) * nu]
    x0 = Ad.dot(x0) + Bd.dot(ctrl)
    print(x0)
    # Update initial state
    l[:nx] = -x0
    u[:nx] = -x0
    prob.update(l=l, u=u)
    u_q = ctrl
    return u_q, x0


def distance_judge(distance):
    # 判断是否达到终点,并抛出异常
    if DISTANCE_LVL2 <= distance <= DISTANCE_LVL1:
        raise slow_LVL1
    elif DISTANCE_END <= distance <= DISTANCE_LVL2:
        raise slow_LVL2
    elif distance <= DISTANCE_END:
        raise slow_end


def slow_down(distance):  # 减速判断函数
    vr = 0.3
    wr = 0.15
    robot_state = "robot is tracking next way point!!"
    try:
        distance_judge(distance)
    except slow_LVL1:
        vr = slow_LVL1.V_DESIRED
        wr = slow_LVL1.W_DESIRED
    except slow_LVL2:
        vr = slow_LVL2.V_DESIRED
        wr = slow_LVL2.W_DESIRED
    except slow_end:
        vr = slow_end.V_DESIRED
        wr = slow_end.W_DESIRED
        robot_state = "robot has track the path successfully!!"
    finally:
        return vr, wr, robot_state


def callback(req):  # 回调函数
    v_point = req.point  # 路径点
    v_state = req.state  # 机器人位置状态
    distance = req.distance  # 距离终点的距离
    # 先判断是否达到终点,返回控制器v,w参数
    vr, wr, robot_state = slow_down(distance)
    rospy.loginfo("the desired v is:%f, w is:%f", vr, wr)  # 期望速度
    rospy.loginfo(robot_state)  # 机器人当前任务
    if vr != 0.0 and wr != 0.0:  # 判断是否达到停止距离
        ctrl_res, x0_res = MPC_controller(v_state, v_point, vr, wr)
        rospy.loginfo("the error of next predictive step is x_e:%f, y_e:%f, yaw_e:%f", x0_res[0], x0_res[1], x0_res[2])
        v_actual = ctrl_res[0] + vr
        w_actual = ctrl_res[1] + wr
    else:
        v_actual = 0.0
        w_actual = 0.0
    rospy.loginfo("the actual v is:%f, w is:%f", v_actual, w_actual)  # 输出速度信息
    return mpcResponse(v_actual, w_actual, robot_state)


def server():
    rospy.init_node("mpc_server")  # 初始化节点
    s = rospy.Service("mpc_srv", mpc, callback)  # 新建一个新的服务,服务类型mpc, 回调函数calArea
    rospy.loginfo("Ready to optimize...")  # 准备OK
    rospy.spin()  # 循环等待


if __name__ == '__main__':

    try:
        server()
    except rospy.ROSInterruptException:
        pass

程序中采用异常处理的方式对小车进行减速处理和更改小车动作。

4.MPC客户端C++程序

用来实现订阅路径、搜寻目标点、发送速度等功能

mpc_client.cpp:

#include <cstdlib>
#include <vector>
#include <stdlib.h>
#include <math.h>
#include <cmath>
#include "ros/ros.h"
#include "path_track/mpc.h"   //自定义服务类型
#include "path_track/pose.h"  //自定义消息类型
#include "path_track/pose_error.h"  //自定义消息类型
#include <iostream>
#include <nav_msgs/Path.h>
#include <geometry_msgs/Twist.h>
#include <geometry_msgs/PoseStamped.h>
#include <geometry_msgs/Quaternion.h>
#include <geometry_msgs/Point.h>
#include <visualization_msgs/Marker.h>
#include <tf/transform_broadcaster.h>

using namespace std;
#define pi acos(-1)
#define freq  20  //跟踪频率  10 20 30
#define dt 1/freq  //时间间隔


//定义路径点类
typedef struct waypoint {
	int ID;
	double x;
	double y;
	double yaw;
}waypoint;


//定义小车状态类
typedef struct vehicleState {
	double x;
	double y;
	double yaw;
	double v;
	double w;
}vehicleState;


//用struct Result返回三个参数
typedef struct Result {
	double v;
	double w;
	std::string goal;
	int index;
}Result;


//定义小车状态更新函数
vehicleState update(vehicleState state)//定义更新函数
{
	state.x += state.v * cos(state.yaw) * dt;
	state.y += state.v * sin(state.yaw) * dt;
	state.yaw += state.w * dt;
	return state;
}


//定义路径点类
class Path {
private:
	vector <waypoint> path;//路径数组
public:
	//添加新的路径点
	void Add_new_point(waypoint& p)
	{
		path.push_back(p);
	}

	//路径点个数
	unsigned int Size()
	{
		return path.size();
	}

	//获取路径点
	waypoint Get_waypoint(int index)
	{
		waypoint p;
		p.ID = path[index].ID;
		p.x = path[index].x;
		p.y = path[index].y;
		p.yaw = path[index].yaw;
		return p;
	}



	// 搜索路径点, 将小车到起始点的距离与小车到每一个点的距离对比,找出最近的目标点索引值
	int Find_target_index(vehicleState state)
	{
		double min = abs(sqrt(pow(state.x - path[0].x, 2) + pow(state.y - path[0].y, 2)));
		int index = 0;
		for (int i = 0; i < path.size(); i++)
		{
			double d = abs(sqrt(pow(state.x - path[i].x, 2) + pow(state.y - path[i].y, 2)));
			if (d < min)
			{
				min = d;
				index = i;
			}
		}

		//索引到终点前,当(机器人与下一个目标点的距离Lf)小于(当前目标点到下一个目标点距离L)时,索引下一个目标点
		if ((index + 1) < path.size())
		{
			double current_x = path[index].x; double current_y = path[index].y;
			double next_x = path[index + 1].x; double next_y = path[index + 1].y;
			double L = abs(sqrt(pow(next_x - current_x, 2) + pow(next_y - current_y, 2)));
			double Lf = abs(sqrt(pow(state.x - next_x, 2) + pow(state.y - next_y, 2)));
			//ROS_INFO("L is %f,Lf is %f",L,Lf);
			if (Lf < L)
			{
				index += 1;
			}
		}
		return index;
	}
};


//定义mpc跟踪类
class mpc_node {
private:
	//ROS!!!
	ros::NodeHandle nh;
	//订阅路径点
	ros::Subscriber path_sub;
	//发布速度指令
	ros::Publisher vel_pub;
	//向rviz发布小车的模拟位置
	ros::Publisher visual_state_pub;
	//发布小车位置状态
	ros::Publisher actual_state_pub;
	//发布小车状态位置误差
	ros::Publisher state_error_pub;
	//客户端
	ros::ServiceClient client;

	//robot!!
	// 状态指令符
	int STATE;
	//小车状态
	vehicleState state;
	//虚拟小车位置数组
	geometry_msgs::Point visual_state_pose;
	//虚拟小车位置容器
	visualization_msgs::Marker visual_state_path;
	//实际小车位置
	path_track::pose actual_pose;
	//小车状态误差
	path_track::pose_error pose_error;
	//速度指令
	geometry_msgs::Twist vel_msg;
	//最后一个路径点索引
	int lastIndex;
	//最后一个路径点
	waypoint lastPoint;
	//创建path_track::mpc类型的service消息
	path_track::mpc srv;

public:

	//实例化路径类
	Path path;

	//初始化
	mpc_node(ros::NodeHandle& nh)
	{
		//ROS!!
		vel_pub = nh.advertise<geometry_msgs::Twist>("/cmd_vel", 10000);
		visual_state_pub = nh.advertise<visualization_msgs::Marker>("visualization_pose", 10000);
		actual_state_pub = nh.advertise<path_track::pose>("pose_publisher", 10000);
		state_error_pub = nh.advertise<path_track::pose_error>("pose_error_publisher", 10000);
		path_sub = nh.subscribe("/path_point_pose", 10000000, &mpc_node::addpointcallback, this);
		client = nh.serviceClient<path_track::mpc>("mpc_srv");



		//robot!!!
		state = { -0.271, -2.3474, 0.2138, 0.0, 0.0 };
		pose_error.x_e = 0.0; pose_error.y_e = 0.0; pose_error.yaw_e = 0.0;
		STATE = 0;

	}

	~mpc_node() {}

	void addpointcallback(const geometry_msgs::PoseStamped::ConstPtr& msg)//储存路径点函数
	{
		//储存路径点的变量
		waypoint vp;

		//得到x,y
		vp.ID = msg->header.seq;
		vp.x = msg->pose.position.x;
		vp.y = msg->pose.position.y;

		//得到yaw
		tf::Quaternion quat;//tf坐标转换
		tf::quaternionMsgToTF(msg->pose.orientation, quat);
		double roll, pitch, yaw;
		tf::Matrix3x3(quat).getRPY(roll, pitch, yaw);
		if (yaw < 0)
		{
			yaw = 2 * pi + yaw;
		}
		vp.yaw = yaw;
		path.Add_new_point(vp);
		//ROS_INFO("ID:%d, yaw:%0.6f",vp.ID,vp.yaw);
		STATE = 1;
	}

	Result mpc_controller(vehicleState state, int index)//控制器函数
	{
		Result ret;
		waypoint track_point; //跟踪的目标点

		// 再次判断路径点索引值,防止采样周期内小车已越过目标点
		int new_index = path.Find_target_index(state);
		if (index >= new_index)
		{
			new_index = index;
		}

		//判断是否到最后一个点
		if (new_index < path.Size())
		{
			track_point = path.Get_waypoint(new_index);
		}
		else
		{
			track_point = path.Get_waypoint(new_index - 1);
			new_index = path.Size() - 1;
		}
		ret.index = new_index;

		//用path_track::pose数据类型构造机器人位置和目标点位置
		path_track::pose v_state, v_point;
		v_state.x = state.x; v_state.y = state.y; v_state.yaw = state.yaw;
		v_point.x = track_point.x; v_point.y = track_point.y; v_point.yaw = track_point.yaw;

		//判断机器人与终点的距离
		double v_distance = 10000000000;
		lastIndex = path.Size() - 1;
		lastPoint = path.Get_waypoint(lastIndex);
		//ROS_INFO("the last index ID is %d",lastPoint.ID);
		if (new_index = path.Size() - 1)
		{
			v_distance = abs(sqrt(pow(v_state.x - lastPoint.x, 2) + pow(v_state.y - lastPoint.y, 2)));
		}
		//ROS_INFO("the distance with last point is %f", v_distance);

		//调用服务,使用MPC优化器
		srv.request.state = v_state;
		srv.request.point = v_point;
		srv.request.distance = v_distance;
		if (client.call(srv))
		{
			ret.v = srv.response.v;
			ret.w = srv.response.w;
			ret.goal = srv.response.goal;
		}
		else
		{
			ROS_ERROR("Failed");
		}
		return ret;
	}

	void PUB()//发布函数
	{
		visual_state_path.points.push_back(visual_state_pose);
		visual_state_pub.publish(visual_state_path);
		vel_pub.publish(vel_msg);
		actual_state_pub.publish(actual_pose);
		state_error_pub.publish(pose_error);
	}


	void mpc_track()//跟踪目标点流程
	{
		//搜索路径点
		int target_index = path.Find_target_index(state);

		//通过mpc控制器解算得到v、w、机器人动作、跟踪路径点索引
		Result res = mpc_controller(state, target_index);

		// 检查路径点索引
		waypoint point_check = path.Get_waypoint(res.index);
		//ROS_INFO("the tracked point is ID:%d, yaw=%f", point_check.ID, point_check.yaw);

		//v,w赋值
		state.v = res.v; vel_msg.linear.x = res.v;
		state.w = res.w; vel_msg.angular.z = res.w;

		//虚拟小车位置状态赋值
		visual_state_pose.x = state.x; visual_state_pose.y = state.y;

		//实际小车位置状态赋值
		actual_pose.x = state.x; actual_pose.y = state.y; actual_pose.yaw = state.yaw;

		//小车状态误差赋值
		pose_error.x_e = state.x - point_check.x; pose_error.y_e = state.y - point_check.y; pose_error.yaw_e = state.yaw - point_check.yaw;

		//输出信息检查
		ROS_INFO("x: %0.6f, y: %0.6f, yaw: %0.6f, v: %0.6f, w:%0.6f", state.x, state.y, state.yaw, state.v, state.w);//机器人信息
		ROS_INFO("x_d: %0.6f, y_d: %0.6f, yaw_d: %0.6f", point_check.x, point_check.y, point_check.yaw);
		ROS_INFO("x_e: %0.6f,y_e: %0.6f,yaw_e: %0.6f", pose_error.x_e, pose_error.y_e, pose_error.yaw_e);
		ROS_INFO(res.goal.c_str());//机器人动作
		ROS_INFO("----------------");

        //发布信息
		PUB();

		//更新小车状态
		state = update(state);
	}

	void Control()//轨迹跟踪流程控制

	{
		ros::Rate loop_rate(freq);

		//配置marker基本属性
		visual_state_path.header.frame_id = "map";
		visual_state_path.header.stamp = ros::Time::now();
		visual_state_path.action = visualization_msgs::Marker::ADD;
		visual_state_path.ns = "mpc";//命名空间

		//设置点的属性
		visual_state_path.id = 0;
		visual_state_path.type = visualization_msgs::Marker::POINTS;
		visual_state_path.scale.x = 0.01;
		visual_state_path.scale.y = 0.01;
		visual_state_path.color.r = 1.0;
		visual_state_path.color.a = 1.0;

		//配置tf坐标转换
		tf::TransformBroadcaster br;
		tf::Transform transform;
		tf::Quaternion q;

		//节点启动时
		while (ros::ok())
		{
			transform.setOrigin(tf::Vector3(state.x, state.y, 0));
			q.setRPY(0, 0, state.yaw);
			transform.setRotation(q);
			br.sendTransform(tf::StampedTransform(transform, ros::Time::now(), "map", "robot"));
			switch (STATE) {
			case 1:
				mpc_track();
				break;
			}

			ros::spinOnce();
			loop_rate.sleep();//延时程序
		}
	}
};



int main(int argc, char** argv)
{
	ros::init(argc, argv, "mpc_client"); //初始化节点
	ros::NodeHandle n;
	mpc_node node(n);  //实例化mpc跟踪类
	node.Control();  //运行控制函数
	return (0);
}

程序中包含了一些进阶写法,比如在类中订阅和发布,通过总控制函数运行程序。

CMakelists.txt中的更改如下:

###########
## Build ##
###########

## Specify additional locations of header files
## Your package locations should be listed before other locations

# mpc track
add_executable(mpc_client src/mpc_client.cpp)

add_dependencies(mpc_client ${PROJECT_NAME}_gencpp) 

target_link_libraries(mpc_client ${catkin_LIBRARIES})

最后进行编译。

三、rviz设置

rviz中包含三个添加的虚拟模块,分别是:path、Marker、TF

path是由/path_point 发布,Marker由/visualization_pose发布(见mpc_track_client.cpp),TF是由广播器发布(见mpc_track_client.cpp的while函数中?br.sendTransform)

?建议先把rviz设置好了之后保存到rviz文件夹中

四、launch文件

为了同时开启多个节点(或服务),在path_track功能保重创建一个launch文件夹,将mpc_track.launch文件放入。

mpc_track.launch:

<?xml version="1.0"?>
<launch>

  <!--MPC optimization server-->
  <node pkg="path_track" type="mpc_server.py" name="mpc_optimization">
  </node>

  <!--rviz-->
  <node name="rviz" pkg="rviz" type="rviz" required="true"
      args="-d $(find path_track)/rviz/mpc_track.rviz">
  </node>

  <!--MPC track client-->
  <node pkg="path_track" type="mpc_client" name="mpc_track_node" output="screen">
  </node>


</launch>

五、仿真结果

打开终端

~$ roslaunch path_trrack mpc_track.launch

~$ rosrun path_planning send_point?

直接上图,

绿色线为期望的圆形轨迹(path),红色的为小车从起始点到跟踪完成的轨迹(Marker),

起始点在程序中初始化为state = { -0.271, -2.3474, 0.2138, 0.0, 0.0 }。

具体的跟踪情况如下:

MPC_track_circle

六、附加

????????程序中设置了小车在逐渐到达终点的过程中进行减速,并且输出小车目前的动作。在实际的实验过程中,需要调整MPC控制器(mpc_server.py)中的具体参数,比如速度、控制输入约束、状态量约束等。

总结

本博客实现了MPC模型预测控制对圆形轨迹进行跟踪控制

分别创建了两个功能包:path_planning和path_track用于轨迹发送和轨迹跟踪。

一个比较好的思路是采用client——server的方式去调用MPC优化控制器,有如下好处:

1.避免了在C++程序中写osqp库的MPC程序,C++程序过于复杂,python反而简单明了一些

2.能够在C++中同时使用ros::Rate.sleep()和ros::spinOnce(),解决了在python中不能同时使用的情况。因为python中只有rospy.spin(),而且同时使用的时候貌似会出问题,我没有调出来,所以最后采用了这种方式。

这个仿真我已经在无人车实验平台上运行过,但是效果不是很好,可能与雷达的精度、参数有很大的关系。而且不可忽略的一点是预测模型本来就不能替代真正的无人车,所以参数绝对会有摄动

后续可能会考虑采用 鲁棒H∞控制 对 传统模型预测控制 进行改进。

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-04-01 00:02:58  更:2022-04-01 00:04:30 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/9 1:44:43-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码