目录
简介
思路
模型介绍及优化过程
ROS环境仿真
一、路径发送
二、路径跟踪
1.自定义消息类型
2.自定义服务类型
3.MPC控制器服务端的python程序
4.MPC客户端C++程序
三、rviz设置
四、launch文件
五、仿真结果
六、附加
总结
简介
????????之前的博客提到过python调用osqp库的具体操作步骤,则该博客采用osqp库写MPC程序,对给定圆形轨迹进行跟踪,不使用mpc_local_planner。
思路
执行该轨迹跟总任务的思路如下:
step1. /send_point节点通过自定义话题(/path_point_pose)发送圆形轨迹到/mpc_track_node节点,同时发送/path_point到rviz上显示出轨迹
step2.通过计算后得到速度(/cmd_vel),并计算虚拟小车位置(/visualization_pose),发送到rviz上显示
在step2中,/mpc_track_node仅执行接收路径点,搜寻目标点,发送小车位置、速度信息等功能,真正的mpc优化程序是服务/mpc_optimization
模型介绍及优化过程
网络上已经有太多解释了,这里就不再赘述,大家可以去这篇博客中了解,《无人驾驶之车辆控制 (2)MPC模型预测控制算法》
本博客中模型预测控制采用的是运动学模型,从状态空间模型到线性化过程再到离散化,它的离散化过程就是使用简单的一阶差分法:
移项后得到:
,? ?
,.
ROS环境仿真
一、路径发送
我创建了一个专门用来发送路径的功能包,为了以后路径规划做准备(示例中为path_planning)
程序实现的功能是根据运动学计算出一个圆形轨迹,发送两个话题:
/path_point_pose用于给跟踪节点传递路径
/path_point用于给rviz显示轨迹
直接上程序:
send_point.cpp,放到功能包的src下
#include <ros/ros.h>
#include <ros/console.h>
#include <nav_msgs/Path.h>
#include <std_msgs/String.h>
#include <std_msgs/Int16.h>
#include <geometry_msgs/Quaternion.h>
#include <geometry_msgs/PoseStamped.h>
#include <tf/transform_broadcaster.h>
#include <tf/tf.h>
#include <math.h>
#define pi acos(-1)
#define dt 0.01
#define freq 100 //发布频率 10 20 30
//创建机器人信息的结构体
typedef struct robot{
double x,y,th;
}robot;
typedef struct robot_a{
double vx,vy,vth;
}robot_a;
//定义状态更新函数
robot state(robot &robot,robot_a &robot_a)
{
double delta_x = (robot_a.vx * cos(robot.th) - robot_a.vy * sin(robot.th)) * dt;
double delta_y = (robot_a.vx * sin(robot.th) + robot_a.vy * cos(robot.th)) * dt;
double delta_th = robot_a.vth * dt;
robot.x += delta_x;
robot.y += delta_y;
robot.th += delta_th;
return robot;
}
class path_produce
{
private:
ros::NodeHandle nh;
ros::Publisher path_pub;
ros::Publisher path_point_pub;
robot robot_now;
robot_a robot_a_now;
nav_msgs::Path path;
geometry_msgs::PoseStamped this_pose_stamped;
std_msgs::Int16 ID;
public:
path_produce(ros::NodeHandle& nh,robot& robot_,robot_a& robot_a_)
{
path_pub = nh.advertise<nav_msgs::Path>("/path_point",10000000, true);
path_point_pub=nh.advertise<geometry_msgs::PoseStamped>("/path_point_pose",10000000,true);
robot_now=robot_;
robot_a_now=robot_a_;
ID.data=0;
}
void PUB()
{
path.poses.push_back(this_pose_stamped);
path_pub.publish(path);
path_point_pub.publish(this_pose_stamped);
}
void path_publisher()
{
ID.data+=1;
this_pose_stamped.header.seq=ID.data;
ROS_INFO("robot's id is %d",ID.data);
this_pose_stamped.pose.position.x = robot_now.x;
this_pose_stamped.pose.position.y = robot_now.y;
geometry_msgs::Quaternion goal_quat = tf::createQuaternionMsgFromYaw(robot_now.th);
this_pose_stamped.pose.orientation.x = goal_quat.x;
this_pose_stamped.pose.orientation.y = goal_quat.y;
this_pose_stamped.pose.orientation.z = goal_quat.z;
this_pose_stamped.pose.orientation.w = goal_quat.w;
PUB();
ROS_INFO("the Euler yaw is :%f", robot_now.th);
robot_now=state(robot_now,robot_a_now);
}
void control()
{
ros::Rate loop_rate(freq);
path.header.frame_id="map";
this_pose_stamped.header.stamp=ros::Time::now();
this_pose_stamped.header.frame_id="map";
while(ros::ok())
{
while(robot_now.th<2*pi)
//while(robot_now.x<10)
{
path_publisher();
loop_rate.sleep();
}
}
}
};
main (int argc, char **argv)
{
ros::init (argc, argv, "send_point");
ros::NodeHandle n;
//定义一个机器人,初始化位置
robot i;
i.x=0.0;i.y=-2.0;i.th=0.0;
//定义机器人速度,初始化速度
robot_a i_a;
i_a.vx=0.5;i_a.vy=0.0;i_a.vth=0.25;
path_produce path(n,i,i_a);
path.control();
return 0;
}
程序中包含了一些进阶写法,比如在类中发布,通过总控制函数运行程序等。
CMakelists.txt中的更改如下:
###########
## Build ##
###########
## Specify additional locations of header files
## Your package locations should be listed before other locations
include_directories(
# include
${catkin_INCLUDE_DIRS}
)
add_executable(send_point src/send_point.cpp)
target_link_libraries(send_point ${catkin_LIBRARIES})
add_dependencies(send_point ${PROJECT_NAME}_gencpp )
最后进行编译。?
二、路径跟踪
同样的,我创建了一个专门用来轨迹跟踪的功能包(示例中为path_track)
1.自定义消息类型
建议去B站找一下自定义消息类型创建的方法,参考古月居:话题消息的定义与使用
程序中所用到的消息类型为pose.msg和pose_error.msg,我们需要在功能包内建立一个msg文件夹,里面放置这两个.msg文件
?两个.msg文件内容如下:
pose.msg
float32 x
float32 y
float32 yaw
pose_error.msg
float32 x_e
float32 y_e
float32 yaw_e
?在CmakeLists.txt中添加这两个msg:
################################################
## Declare ROS messages, services and actions ##
################################################
## Generate messages in the 'msg' folder
add_message_files(
FILES
pose.msg
pose_error.msg
# Message2.msg
)
2.自定义服务类型
参考古月居:服务数据的定义与使用
程序中所用到的服务为mpc.srv,向优化器传入跟踪目标点、小车位置、距离终点的距离这三个参数,返回解算的速度、角速度和小车目前动作。
mpc.srv文件如下:
path_track/pose point
path_track/pose state
float32 distance
---
float32 v
float32 w
string goal
?在CmakeLists.txt中添加这个srv:
## Generate services in the 'srv' folder
add_service_files(
FILES
mpc.srv
# Service2.srv
)
3.MPC控制器服务端的python程序
mpc_server.py:
注意是python3的解释器,别忘了设置作为可执行程序
#!/usr/bin/env python3
# -*- coding: UTF-8 -*-
import rospy
import osqp
from path_track.srv import mpc, mpcResponse, mpcRequest # 导入自定义服务
import numpy as np
from scipy import sparse
import math
freq = 20 # 采样频率
T = 1 / freq # 采样周期
class slow_LVL1(Exception): # 第一阶段减速速度
V_DESIRED = 0.1
W_DESIRED = 0.05
class slow_LVL2(Exception): # 第二阶段减速速度
V_DESIRED = 0.05
W_DESIRED = 0.025
class slow_end(Exception): # 停止
V_DESIRED = 0.0
W_DESIRED = 0.0
DISTANCE_LVL1 = 0.1 # 第一阶段安全距离
DISTANCE_LVL2 = 0.5 # 第二阶段安全距离
DISTANCE_END = 0.1 # 跟踪停止距离
def MPC_controller(state, point, vr, wr):
# Discrete time model of a quadcopter # 离散化模型参数
Ad = sparse.csc_matrix([
[1.0, 0.0, -T * vr * math.sin(point.yaw)],
[0.0, 1.0, T * vr * math.cos(point.yaw)],
[0, 0, 1.0]
])
Bd = sparse.csc_matrix([
[T * math.cos(point.yaw), 0.0],
[T * math.sin(point.yaw), 0.0],
[0, T]
])
[nx, nu] = Bd.shape
# Constraints
# 控制输入u=[v w]
umin = np.array([-0.5, -0.5]) # 控制输入下限
umax = np.array([0.5, 0.5]) # 控制输入上限
xmin = np.array([-3.0, -3.0, -3.0]) # 控制变量下限
xmax = np.array([3.0, 3.0, 3.0]) # 控制变量上限
# Objective function
Q = sparse.diags([80, 80, 1])
QN = Q # 权重矩阵Q
R = 0.5 * sparse.eye(2) # 权重矩阵R
# Initial and reference states
x0 = np.array([state.x - point.x, state.y - point.y, state.yaw - point.yaw]) # 状态变量初始值=小车位置-路径点位置
xr = np.zeros(3) # 参考状态,误差期望值[0,0,0]
# Prediction horizon
N = 15
# Cast MPC problem to a QP: x = (x(0),x(1),...,x(N),u(0),...,u(N-1))
# - quadratic objective
P = sparse.block_diag([sparse.kron(sparse.eye(N), Q), QN,
sparse.kron(sparse.eye(N), R)], format='csc')
# - linear objective
q = np.hstack([np.kron(np.ones(N), -Q.dot(xr)), -QN.dot(xr),
np.zeros(N * nu)])
# - linear dynamics 由预测层推导出的预测模型
Ax = sparse.kron(sparse.eye(N + 1), -sparse.eye(nx)) + sparse.kron(sparse.eye(N + 1, k=-1), Ad) # 克罗内克积 A ⊙ B
Bu = sparse.kron(sparse.vstack([sparse.csc_matrix((1, N)), sparse.eye(N)]), Bd)
Aeq = sparse.hstack([Ax, Bu])
leq = np.hstack([-x0, np.zeros(N * nx)])
# print(f'low bound is {leq}')
ueq = leq
# print(f'up bound is {ueq}')
# - input and state constraints
Aineq = sparse.eye((N + 1) * nx + N * nu)
lineq = np.hstack([np.kron(np.ones(N + 1), xmin), np.kron(np.ones(N), umin)])
uineq = np.hstack([np.kron(np.ones(N + 1), xmax), np.kron(np.ones(N), umax)])
# - OSQP constraints
A = sparse.vstack([Aeq, Aineq], format='csc')
l = np.hstack([leq, lineq])
u = np.hstack([ueq, uineq])
# Create an OSQP object
prob = osqp.OSQP()
# Setup workspace
prob.setup(P, q, A, l, u)
# Simulate in closed loop
# Solve
res = prob.solve()
# Check solver status
if res.info.status != 'solved':
raise ValueError('OSQP did not solve the problem!')
# t.goto(x0[0], x0[1])
# Apply first control input to the plant
ctrl = res.x[-N * nu:-(N - 1) * nu]
x0 = Ad.dot(x0) + Bd.dot(ctrl)
print(x0)
# Update initial state
l[:nx] = -x0
u[:nx] = -x0
prob.update(l=l, u=u)
u_q = ctrl
return u_q, x0
def distance_judge(distance):
# 判断是否达到终点,并抛出异常
if DISTANCE_LVL2 <= distance <= DISTANCE_LVL1:
raise slow_LVL1
elif DISTANCE_END <= distance <= DISTANCE_LVL2:
raise slow_LVL2
elif distance <= DISTANCE_END:
raise slow_end
def slow_down(distance): # 减速判断函数
vr = 0.3
wr = 0.15
robot_state = "robot is tracking next way point!!"
try:
distance_judge(distance)
except slow_LVL1:
vr = slow_LVL1.V_DESIRED
wr = slow_LVL1.W_DESIRED
except slow_LVL2:
vr = slow_LVL2.V_DESIRED
wr = slow_LVL2.W_DESIRED
except slow_end:
vr = slow_end.V_DESIRED
wr = slow_end.W_DESIRED
robot_state = "robot has track the path successfully!!"
finally:
return vr, wr, robot_state
def callback(req): # 回调函数
v_point = req.point # 路径点
v_state = req.state # 机器人位置状态
distance = req.distance # 距离终点的距离
# 先判断是否达到终点,返回控制器v,w参数
vr, wr, robot_state = slow_down(distance)
rospy.loginfo("the desired v is:%f, w is:%f", vr, wr) # 期望速度
rospy.loginfo(robot_state) # 机器人当前任务
if vr != 0.0 and wr != 0.0: # 判断是否达到停止距离
ctrl_res, x0_res = MPC_controller(v_state, v_point, vr, wr)
rospy.loginfo("the error of next predictive step is x_e:%f, y_e:%f, yaw_e:%f", x0_res[0], x0_res[1], x0_res[2])
v_actual = ctrl_res[0] + vr
w_actual = ctrl_res[1] + wr
else:
v_actual = 0.0
w_actual = 0.0
rospy.loginfo("the actual v is:%f, w is:%f", v_actual, w_actual) # 输出速度信息
return mpcResponse(v_actual, w_actual, robot_state)
def server():
rospy.init_node("mpc_server") # 初始化节点
s = rospy.Service("mpc_srv", mpc, callback) # 新建一个新的服务,服务类型mpc, 回调函数calArea
rospy.loginfo("Ready to optimize...") # 准备OK
rospy.spin() # 循环等待
if __name__ == '__main__':
try:
server()
except rospy.ROSInterruptException:
pass
程序中采用异常处理的方式对小车进行减速处理和更改小车动作。
4.MPC客户端C++程序
用来实现订阅路径、搜寻目标点、发送速度等功能
mpc_client.cpp:
#include <cstdlib>
#include <vector>
#include <stdlib.h>
#include <math.h>
#include <cmath>
#include "ros/ros.h"
#include "path_track/mpc.h" //自定义服务类型
#include "path_track/pose.h" //自定义消息类型
#include "path_track/pose_error.h" //自定义消息类型
#include <iostream>
#include <nav_msgs/Path.h>
#include <geometry_msgs/Twist.h>
#include <geometry_msgs/PoseStamped.h>
#include <geometry_msgs/Quaternion.h>
#include <geometry_msgs/Point.h>
#include <visualization_msgs/Marker.h>
#include <tf/transform_broadcaster.h>
using namespace std;
#define pi acos(-1)
#define freq 20 //跟踪频率 10 20 30
#define dt 1/freq //时间间隔
//定义路径点类
typedef struct waypoint {
int ID;
double x;
double y;
double yaw;
}waypoint;
//定义小车状态类
typedef struct vehicleState {
double x;
double y;
double yaw;
double v;
double w;
}vehicleState;
//用struct Result返回三个参数
typedef struct Result {
double v;
double w;
std::string goal;
int index;
}Result;
//定义小车状态更新函数
vehicleState update(vehicleState state)//定义更新函数
{
state.x += state.v * cos(state.yaw) * dt;
state.y += state.v * sin(state.yaw) * dt;
state.yaw += state.w * dt;
return state;
}
//定义路径点类
class Path {
private:
vector <waypoint> path;//路径数组
public:
//添加新的路径点
void Add_new_point(waypoint& p)
{
path.push_back(p);
}
//路径点个数
unsigned int Size()
{
return path.size();
}
//获取路径点
waypoint Get_waypoint(int index)
{
waypoint p;
p.ID = path[index].ID;
p.x = path[index].x;
p.y = path[index].y;
p.yaw = path[index].yaw;
return p;
}
// 搜索路径点, 将小车到起始点的距离与小车到每一个点的距离对比,找出最近的目标点索引值
int Find_target_index(vehicleState state)
{
double min = abs(sqrt(pow(state.x - path[0].x, 2) + pow(state.y - path[0].y, 2)));
int index = 0;
for (int i = 0; i < path.size(); i++)
{
double d = abs(sqrt(pow(state.x - path[i].x, 2) + pow(state.y - path[i].y, 2)));
if (d < min)
{
min = d;
index = i;
}
}
//索引到终点前,当(机器人与下一个目标点的距离Lf)小于(当前目标点到下一个目标点距离L)时,索引下一个目标点
if ((index + 1) < path.size())
{
double current_x = path[index].x; double current_y = path[index].y;
double next_x = path[index + 1].x; double next_y = path[index + 1].y;
double L = abs(sqrt(pow(next_x - current_x, 2) + pow(next_y - current_y, 2)));
double Lf = abs(sqrt(pow(state.x - next_x, 2) + pow(state.y - next_y, 2)));
//ROS_INFO("L is %f,Lf is %f",L,Lf);
if (Lf < L)
{
index += 1;
}
}
return index;
}
};
//定义mpc跟踪类
class mpc_node {
private:
//ROS!!!
ros::NodeHandle nh;
//订阅路径点
ros::Subscriber path_sub;
//发布速度指令
ros::Publisher vel_pub;
//向rviz发布小车的模拟位置
ros::Publisher visual_state_pub;
//发布小车位置状态
ros::Publisher actual_state_pub;
//发布小车状态位置误差
ros::Publisher state_error_pub;
//客户端
ros::ServiceClient client;
//robot!!
// 状态指令符
int STATE;
//小车状态
vehicleState state;
//虚拟小车位置数组
geometry_msgs::Point visual_state_pose;
//虚拟小车位置容器
visualization_msgs::Marker visual_state_path;
//实际小车位置
path_track::pose actual_pose;
//小车状态误差
path_track::pose_error pose_error;
//速度指令
geometry_msgs::Twist vel_msg;
//最后一个路径点索引
int lastIndex;
//最后一个路径点
waypoint lastPoint;
//创建path_track::mpc类型的service消息
path_track::mpc srv;
public:
//实例化路径类
Path path;
//初始化
mpc_node(ros::NodeHandle& nh)
{
//ROS!!
vel_pub = nh.advertise<geometry_msgs::Twist>("/cmd_vel", 10000);
visual_state_pub = nh.advertise<visualization_msgs::Marker>("visualization_pose", 10000);
actual_state_pub = nh.advertise<path_track::pose>("pose_publisher", 10000);
state_error_pub = nh.advertise<path_track::pose_error>("pose_error_publisher", 10000);
path_sub = nh.subscribe("/path_point_pose", 10000000, &mpc_node::addpointcallback, this);
client = nh.serviceClient<path_track::mpc>("mpc_srv");
//robot!!!
state = { -0.271, -2.3474, 0.2138, 0.0, 0.0 };
pose_error.x_e = 0.0; pose_error.y_e = 0.0; pose_error.yaw_e = 0.0;
STATE = 0;
}
~mpc_node() {}
void addpointcallback(const geometry_msgs::PoseStamped::ConstPtr& msg)//储存路径点函数
{
//储存路径点的变量
waypoint vp;
//得到x,y
vp.ID = msg->header.seq;
vp.x = msg->pose.position.x;
vp.y = msg->pose.position.y;
//得到yaw
tf::Quaternion quat;//tf坐标转换
tf::quaternionMsgToTF(msg->pose.orientation, quat);
double roll, pitch, yaw;
tf::Matrix3x3(quat).getRPY(roll, pitch, yaw);
if (yaw < 0)
{
yaw = 2 * pi + yaw;
}
vp.yaw = yaw;
path.Add_new_point(vp);
//ROS_INFO("ID:%d, yaw:%0.6f",vp.ID,vp.yaw);
STATE = 1;
}
Result mpc_controller(vehicleState state, int index)//控制器函数
{
Result ret;
waypoint track_point; //跟踪的目标点
// 再次判断路径点索引值,防止采样周期内小车已越过目标点
int new_index = path.Find_target_index(state);
if (index >= new_index)
{
new_index = index;
}
//判断是否到最后一个点
if (new_index < path.Size())
{
track_point = path.Get_waypoint(new_index);
}
else
{
track_point = path.Get_waypoint(new_index - 1);
new_index = path.Size() - 1;
}
ret.index = new_index;
//用path_track::pose数据类型构造机器人位置和目标点位置
path_track::pose v_state, v_point;
v_state.x = state.x; v_state.y = state.y; v_state.yaw = state.yaw;
v_point.x = track_point.x; v_point.y = track_point.y; v_point.yaw = track_point.yaw;
//判断机器人与终点的距离
double v_distance = 10000000000;
lastIndex = path.Size() - 1;
lastPoint = path.Get_waypoint(lastIndex);
//ROS_INFO("the last index ID is %d",lastPoint.ID);
if (new_index = path.Size() - 1)
{
v_distance = abs(sqrt(pow(v_state.x - lastPoint.x, 2) + pow(v_state.y - lastPoint.y, 2)));
}
//ROS_INFO("the distance with last point is %f", v_distance);
//调用服务,使用MPC优化器
srv.request.state = v_state;
srv.request.point = v_point;
srv.request.distance = v_distance;
if (client.call(srv))
{
ret.v = srv.response.v;
ret.w = srv.response.w;
ret.goal = srv.response.goal;
}
else
{
ROS_ERROR("Failed");
}
return ret;
}
void PUB()//发布函数
{
visual_state_path.points.push_back(visual_state_pose);
visual_state_pub.publish(visual_state_path);
vel_pub.publish(vel_msg);
actual_state_pub.publish(actual_pose);
state_error_pub.publish(pose_error);
}
void mpc_track()//跟踪目标点流程
{
//搜索路径点
int target_index = path.Find_target_index(state);
//通过mpc控制器解算得到v、w、机器人动作、跟踪路径点索引
Result res = mpc_controller(state, target_index);
// 检查路径点索引
waypoint point_check = path.Get_waypoint(res.index);
//ROS_INFO("the tracked point is ID:%d, yaw=%f", point_check.ID, point_check.yaw);
//v,w赋值
state.v = res.v; vel_msg.linear.x = res.v;
state.w = res.w; vel_msg.angular.z = res.w;
//虚拟小车位置状态赋值
visual_state_pose.x = state.x; visual_state_pose.y = state.y;
//实际小车位置状态赋值
actual_pose.x = state.x; actual_pose.y = state.y; actual_pose.yaw = state.yaw;
//小车状态误差赋值
pose_error.x_e = state.x - point_check.x; pose_error.y_e = state.y - point_check.y; pose_error.yaw_e = state.yaw - point_check.yaw;
//输出信息检查
ROS_INFO("x: %0.6f, y: %0.6f, yaw: %0.6f, v: %0.6f, w:%0.6f", state.x, state.y, state.yaw, state.v, state.w);//机器人信息
ROS_INFO("x_d: %0.6f, y_d: %0.6f, yaw_d: %0.6f", point_check.x, point_check.y, point_check.yaw);
ROS_INFO("x_e: %0.6f,y_e: %0.6f,yaw_e: %0.6f", pose_error.x_e, pose_error.y_e, pose_error.yaw_e);
ROS_INFO(res.goal.c_str());//机器人动作
ROS_INFO("----------------");
//发布信息
PUB();
//更新小车状态
state = update(state);
}
void Control()//轨迹跟踪流程控制
{
ros::Rate loop_rate(freq);
//配置marker基本属性
visual_state_path.header.frame_id = "map";
visual_state_path.header.stamp = ros::Time::now();
visual_state_path.action = visualization_msgs::Marker::ADD;
visual_state_path.ns = "mpc";//命名空间
//设置点的属性
visual_state_path.id = 0;
visual_state_path.type = visualization_msgs::Marker::POINTS;
visual_state_path.scale.x = 0.01;
visual_state_path.scale.y = 0.01;
visual_state_path.color.r = 1.0;
visual_state_path.color.a = 1.0;
//配置tf坐标转换
tf::TransformBroadcaster br;
tf::Transform transform;
tf::Quaternion q;
//节点启动时
while (ros::ok())
{
transform.setOrigin(tf::Vector3(state.x, state.y, 0));
q.setRPY(0, 0, state.yaw);
transform.setRotation(q);
br.sendTransform(tf::StampedTransform(transform, ros::Time::now(), "map", "robot"));
switch (STATE) {
case 1:
mpc_track();
break;
}
ros::spinOnce();
loop_rate.sleep();//延时程序
}
}
};
int main(int argc, char** argv)
{
ros::init(argc, argv, "mpc_client"); //初始化节点
ros::NodeHandle n;
mpc_node node(n); //实例化mpc跟踪类
node.Control(); //运行控制函数
return (0);
}
程序中包含了一些进阶写法,比如在类中订阅和发布,通过总控制函数运行程序。
CMakelists.txt中的更改如下:
###########
## Build ##
###########
## Specify additional locations of header files
## Your package locations should be listed before other locations
# mpc track
add_executable(mpc_client src/mpc_client.cpp)
add_dependencies(mpc_client ${PROJECT_NAME}_gencpp)
target_link_libraries(mpc_client ${catkin_LIBRARIES})
最后进行编译。
三、rviz设置
rviz中包含三个添加的虚拟模块,分别是:path、Marker、TF
path是由/path_point 发布,Marker由/visualization_pose发布(见mpc_track_client.cpp),TF是由广播器发布(见mpc_track_client.cpp的while函数中?br.sendTransform)
?建议先把rviz设置好了之后保存到rviz文件夹中
四、launch文件
为了同时开启多个节点(或服务),在path_track功能保重创建一个launch文件夹,将mpc_track.launch文件放入。
mpc_track.launch:
<?xml version="1.0"?>
<launch>
<!--MPC optimization server-->
<node pkg="path_track" type="mpc_server.py" name="mpc_optimization">
</node>
<!--rviz-->
<node name="rviz" pkg="rviz" type="rviz" required="true"
args="-d $(find path_track)/rviz/mpc_track.rviz">
</node>
<!--MPC track client-->
<node pkg="path_track" type="mpc_client" name="mpc_track_node" output="screen">
</node>
</launch>
五、仿真结果
打开终端
~$ roslaunch path_trrack mpc_track.launch
~$ rosrun path_planning send_point?
直接上图,
绿色线为期望的圆形轨迹(path),红色的为小车从起始点到跟踪完成的轨迹(Marker),
起始点在程序中初始化为state = { -0.271, -2.3474, 0.2138, 0.0, 0.0 }。
具体的跟踪情况如下:
六、附加
????????程序中设置了小车在逐渐到达终点的过程中进行减速,并且输出小车目前的动作。在实际的实验过程中,需要调整MPC控制器(mpc_server.py)中的具体参数,比如速度、控制输入约束、状态量约束等。
总结
本博客实现了MPC模型预测控制对圆形轨迹进行跟踪控制
分别创建了两个功能包:path_planning和path_track用于轨迹发送和轨迹跟踪。
一个比较好的思路是采用client——server的方式去调用MPC优化控制器,有如下好处:
1.避免了在C++程序中写osqp库的MPC程序,C++程序过于复杂,python反而简单明了一些
2.能够在C++中同时使用ros::Rate.sleep()和ros::spinOnce(),解决了在python中不能同时使用的情况。因为python中只有rospy.spin(),而且同时使用的时候貌似会出问题,我没有调出来,所以最后采用了这种方式。
这个仿真我已经在无人车实验平台上运行过,但是效果不是很好,可能与雷达的精度、参数有很大的关系。而且不可忽略的一点是预测模型本来就不能替代真正的无人车,所以参数绝对会有摄动。
后续可能会考虑采用 鲁棒H∞控制 对 传统模型预测控制 进行改进。
|