0. 往期内容
[一]深度学习Pytorch-张量定义与张量创建
[二]深度学习Pytorch-张量的操作:拼接、切分、索引和变换
[三]深度学习Pytorch-张量数学运算
[四]深度学习Pytorch-线性回归
[五]深度学习Pytorch-计算图与动态图机制
[六]深度学习Pytorch-autograd与逻辑回归
[七]深度学习Pytorch-DataLoader与Dataset(含人民币二分类实战)
[八]深度学习Pytorch-图像预处理transforms
[九]深度学习Pytorch-transforms图像增强(剪裁、翻转、旋转)
[十]深度学习Pytorch-transforms图像操作及自定义方法
深度学习Pytorch-transforms图像增强
1. 数据增强
2. 剪裁
2.1 transforms.CenterCrop(size)
transforms.CenterCrop(size)
(1)功能:从图像中心裁剪尺寸为size 的图片; (2)参数: size: 若为int ,则尺寸为size*size ; 若为(h,w) ,则尺寸为h*w . (3)代码示例:
train_transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.CenterCrop(196),
transforms.ToTensor(),
transforms.Normalize(norm_mean, norm_std),
])
2.2 transforms.RandomCrop(size, fill=0, padding_mode=‘constant’)
transforms.RandomCrop(size, padding=None, pad_if_needed=False, fill=0, padding_mode='constant')
(1)功能:对图像随机裁剪出尺寸为size 的图片; (2)参数: size: 若为int ,则尺寸为size*size ; 若为(h,w) ,则尺寸为h*w ; padding: 设置填充大小: I. 当padding 为a 时,左右上下均填充a 个像素; II. 当padding 为(a,b) 时,左右填充a 个像素,上下填充b 个像素; III. 当padding 为(a,b,c,d) 时,左、上、右、下分别填充a、b、c、d ; pad_if_need: 若设定的size 大于原图像尺寸,则填充; padding_mode: 填充模式,有4 种模式: I. constant: 像素值由fill设定; II. edge: 像素值由图像边缘的像素值决定; III. reflect: 镜像填充,最后一个像素不镜像,eg. [1,2,3,4] --> [3,2,1,2,3,4,3,2] ; 向左:由于1不会镜像,所以左边镜像2、3 ; 向右:由于4不会镜像,所以右边镜像3、2 ;
IV. symmetric: 镜像填充,最后一个像素镜像,eg. [1,2,3,4] --> [2,1,1,2,3,4,4,3] ; 向左:1、2镜像 ; 向右:4、3镜像 ;
fill: 当padding_mode='constant' 时,用于设置填充的像素值;
(3)代码示例:
train_transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.RandomCrop(224, padding=16),
transforms.RandomCrop(224, padding=(16, 64)),
transforms.RandomCrop(224, padding=16, fill=(255, 0, 0)),
transforms.RandomCrop(512, pad_if_needed=True),
transforms.RandomCrop(224, padding=64, padding_mode='edge'),
transforms.RandomCrop(224, padding=64, padding_mode='reflect'),
transforms.RandomCrop(1024, padding=1024, padding_mode='symmetric'),
transforms.ToTensor(),
transforms.Normalize(norm_mean, norm_std),
])
2.3 transforms.RandomResizedCrop(size, scale=(0.08, 1.0), ratio=(3/4, 4/3), interpolation)
transforms.RandomResizedCrop(size, scale=(0.08, 1.0), ratio=(3/4, 4/3), interpolation=<InterpolationMode.BILINEAR: 'bilinear'>)
(1)功能:随机大小、随机长宽比裁剪图片; (2)参数: size: 裁剪图片尺寸,若为int ,则尺寸为size*size ; 若为(h,w) ,则尺寸为h*w ,size 是最后图片的尺寸; scale: 随机裁剪面积比例,默认区间(0.08,1) ,scale 默认是随机选取0.08-1 之间的一个数 ratio: 随机长宽比,默认区间(3/4,4/3) ,ratio 默认是随机选取3/4-4/3 之间的一个数 interpolation: 插值方法,eg. PIL. Image. NEAREST, PIL. Image. BILINEAR, PIL. Image. BICUBIC ; (3)步骤: 随机确定scale 和ratio ,然后对原始图片进行选取,再将选取的片段缩放到size 大小; (4)代码示例:
train_transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.RandomResizedCrop(size=224, scale=(0.5, 0.5)),
transforms.ToTensor(),
transforms.Normalize(norm_mean, norm_std),
])
2.4 transforms.FiveCrop(size)
transforms.FiveCrop(size)
(1)功能:在图像的左上、右上、左下、右下、中心随机剪裁出尺寸为size 的5 张图片; (2)参数: size: 裁剪图片尺寸,若为int ,则尺寸为size*size ; 若为(h,w) ,则尺寸为h*w ; (3)代码示例:
train_transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.FiveCrop(112),
transforms.Lambda(lambda crops: torch.stack([(transforms.ToTensor()(crop)) for crop in crops])),
])
使用FiveCrop 时需要使用五维可视化,这是因为inputs 为五维(batch_size*ncrops*chanel*图像宽*图像高 ),代码如下:
for epoch in range(MAX_EPOCH):
for i, data in enumerate(train_loader):
inputs, labels = data
bs, ncrops, c, h, w = inputs.shape
for n in range(ncrops):
img_tensor = inputs[0, n, ...]
img = transform_invert(img_tensor, train_transform)
plt.imshow(img)
plt.show()
plt.pause(1)
2.5 transforms.TenCrop(size, vertical_flip=False)
transforms.TenCrop(size, vertical_flip=False)
(1)功能:在图像的左上、右上、左下、右下、中心随机剪裁出尺寸为size 的5 张图片,然后再对这5 张照片进行水平或者垂直镜像来获得总共10 张图片; (2)参数: size: 裁剪图片尺寸,若为int ,则尺寸为size*size ; 若为(h,w) ,则尺寸为h*w ; vertical_flip: 是否垂直翻转,默认为False 代表进行水平翻转; (3)代码示例:
train_transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.TenCrop(112, vertical_flip=False),
transforms.Lambda(lambda crops: torch.stack([(transforms.ToTensor()(crop)) for crop in crops])),
])
使用TenCrop 时需要使用五维 可视化,这是因为inputs 为五维 (batch_size*ncrops*chanel*图像宽*图像高 ),代码如下:
for epoch in range(MAX_EPOCH):
for i, data in enumerate(train_loader):
inputs, labels = data
bs, ncrops, c, h, w = inputs.shape
for n in range(ncrops):
img_tensor = inputs[0, n, ...]
img = transform_invert(img_tensor, train_transform)
plt.imshow(img)
plt.show()
plt.pause(1)
3. 旋转
3.1 transforms.RandomHorizontalFlip(p=0.5)
transforms.RandomHorizontalFlip(p=0.5)
(1)功能:根据概率对图片进行水平(左右)翻转,每次根据概率来决定是否执行翻转; (2)参数: p: 反转概率; (3)代码示例:
train_transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.RandomHorizontalFlip(p=1),
transforms.ToTensor(),
transforms.Normalize(norm_mean, norm_std),
])
3.2 transforms.RandomVerticalFlip(p=0.5)
transforms.RandomVerticalFlip(p=0.5)
(1)功能:根据概率对图片进行垂直(上下)翻转,每次根据概率来决定是否执行翻转; (2)参数: p: 反转概率; (3)代码示例:
train_transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.RandomVerticalFlip(p=0.5),
transforms.ToTensor(),
transforms.Normalize(norm_mean, norm_std),
])
3.3 transforms.RandomRotation(degrees, expand=False, center=None, fill=0, resample=None)
transforms.RandomRotation(degrees, expand=False, center=None, fill=0, resample=None)
(1)功能:对图片旋转随机的角度; (2)参数: degrees: 旋转角度; I. 当degrees 为a 时,在区间(-a,a) 之间随机选择旋转角度; II. 当degrees 为(a,b) 时,在区间(a,b) 之间随机选择旋转角度; resample: 重采样方法; expand: 是否扩大图片以保持原图信息,因为旋转后可能有些信息被遮挡了而丢失,如果扩大尺寸则可以显示完整图片信息; center: 旋转点设置,默认沿着中心旋转; (3)代码示例:
train_transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.RandomRotation(90),
transforms.RandomRotation((90), expand=True),
transforms.RandomRotation(30, center=(0, 0)),
transforms.RandomRotation(30, center=(0, 0), expand=True),
transforms.ToTensor(),
transforms.Normalize(norm_mean, norm_std),
])
4. 完整代码示例
"""
# @file name : transforms_methods_1.py
# @author : tingsongyu
# @date : 2019-09-11 10:08:00
# @brief : transforms方法(一)
"""
import os
import numpy as np
import torch
import random
from torch.utils.data import DataLoader
import torchvision.transforms as transforms
from tools.my_dataset import RMBDataset
from PIL import Image
from matplotlib import pyplot as plt
def set_seed(seed=1):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
set_seed(1)
MAX_EPOCH = 10
BATCH_SIZE = 1
LR = 0.01
log_interval = 10
val_interval = 1
rmb_label = {"1": 0, "100": 1}
def transform_invert(img_, transform_train):
"""
将data 进行反transfrom操作
:param img_: tensor
:param transform_train: torchvision.transforms
:return: PIL image
"""
if 'Normalize' in str(transform_train):
norm_transform = list(filter(lambda x: isinstance(x, transforms.Normalize), transform_train.transforms))
mean = torch.tensor(norm_transform[0].mean, dtype=img_.dtype, device=img_.device)
std = torch.tensor(norm_transform[0].std, dtype=img_.dtype, device=img_.device)
img_.mul_(std[:, None, None]).add_(mean[:, None, None])
img_ = img_.transpose(0, 2).transpose(0, 1)
img_ = np.array(img_) * 255
if img_.shape[2] == 3:
img_ = Image.fromarray(img_.astype('uint8')).convert('RGB')
elif img_.shape[2] == 1:
img_ = Image.fromarray(img_.astype('uint8').squeeze())
else:
raise Exception("Invalid img shape, expected 1 or 3 in axis 2, but got {}!".format(img_.shape[2]) )
return img_
split_dir = os.path.join("..", "..", "data", "rmb_split")
train_dir = os.path.join(split_dir, "train")
valid_dir = os.path.join(split_dir, "valid")
norm_mean = [0.485, 0.456, 0.406]
norm_std = [0.229, 0.224, 0.225]
train_transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(norm_mean, norm_std),
])
valid_transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(norm_mean, norm_std)
])
train_data = RMBDataset(data_dir=train_dir, transform=train_transform)
valid_data = RMBDataset(data_dir=valid_dir, transform=valid_transform)
train_loader = DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)
valid_loader = DataLoader(dataset=valid_data, batch_size=BATCH_SIZE)
for epoch in range(MAX_EPOCH):
for i, data in enumerate(train_loader):
inputs, labels = data
img_tensor = inputs[0, ...]
img = transform_invert(img_tensor, train_transform)
plt.imshow(img)
plt.show()
plt.pause(0.5)
plt.close()
bs, ncrops, c, h, w = inputs.shape
|