IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> LSTM股票价格预测 -> 正文阅读

[人工智能]LSTM股票价格预测

特征缩放:

1归一化
X-Xmin/(Xmax-Xmin) (0,1)
2标准化
X-均值/期望
在这里插入图片描述
7个时间步 最后预测第八天的收盘价格 即图中的y在这里插入图片描述

在这里插入图片描述

     def forward(self, x):
        # Initialize hidden and cell states
        h_0 = Variable(torch.zeros(
            self.num_layers, x.size(0), self.hidden_size))# 上一个时间步的预测值
        c_0 = Variable(torch.zeros(
            self.num_layers, x.size(0), self.hidden_size))# 记忆单元 h0 = sigmod(c0)
        '''
            送进来的每条样本都生成记忆单元向 量
            (层数,样本数量,记忆单元长度)
            (1,724*0.7,5)

        '''
 
        # Propagate input through LSTM
    
        _, (h_out, _) = self.lstm(x, (h_0, c_0)) # 取得最后的输出结果  # 此处分别是 y1-y7,中间结果y7,要送入下一步的记忆单元c
        h_out = h_out.view(-1, self.hidden_size)# 行列变换  (n条样本,5) 每个样本的特征数是5 
        out = self.fc(h_out)# 连接一个全连接层 输出最后的结果h7
        return out

        '''

        # Propagate input through LSTM
        _, (h_out, _) = self.lstm(x, (h_0, c_0)) # 取得最后的输出结果
        h_out = h_out.view(-1, self.hidden_size)
        out = self.fc(h_out)
        return out

在这里插入图片描述

'''
This script shows how to predict stock prices using a basic RNN
'''
import torch
import torch.nn as nn
from torch.autograd import Variable
import numpy as np


torch.manual_seed(777)  # reproducibility

import matplotlib.pyplot as plt

#  特征缩放 归一化
def MinMaxScaler(data):
    numerator = data - np.min(data, 0)
    denominator = np.max(data, 0) - np.min(data, 0)
    # noise term prevents the zero division
    return numerator / (denominator + 1e-7)


# train Parameters
learning_rate = 0.01
num_epochs = 500
input_size = 5
hidden_size = 5
num_classes = 1
timesteps = seq_length = 7
num_layers = 1  # number of layers in RNN

# Open, High, Low, Volume, Close
xy = np.loadtxt('data-02-stock_daily.csv', delimiter=',')
xy = xy[::-1]  # reverse order (chronically ordered) 拿出所有行除了最后一列 特征部分
xy = MinMaxScaler(xy)
x = xy
y = xy[:, [-1]]  # Close as label 拿到最后一列

# build a dataset
dataX = []
dataY = []
for i in range(0, len(y) - seq_length):
    _x = x[i:i + seq_length] # [0,7) x0-x6 _x是一条样本的特征
    _y = y[i + seq_length]  # Next close price 最后一列收盘价格 即y[7]  _y是一条样本的标签 
    print(_x, "->", _y)
    dataX.append(_x)
    dataY.append(_y)

# train/test split
train_size = int(len(dataY) * 0.7) #724条数据 *0.7
test_size = len(dataY) - train_size #724*0.3
trainX = torch.Tensor(np.array(dataX[0:train_size]))
trainX = Variable(trainX)# 张量变自动求导的过程
testX = torch.Tensor(np.array(dataX[train_size:len(dataX)]))
testX = Variable(testX)
trainY = torch.Tensor(np.array(dataY[0:train_size]))
trainY = Variable(trainY)
testY = torch.Tensor(np.array(dataY[train_size:len(dataY)]))
testY = Variable(testY)


class LSTM(nn.Module):
     # 分类问题只有一个数,一次性送入5条样本数据,记忆单元向量的长度为5,一个rnn单元
    def __init__(self, num_classes, input_size, hidden_size, num_layers):
        super(LSTM, self).__init__()
        self.num_classes = num_classes
        self.num_layers = num_layers
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.seq_length = seq_length
        # Set parameters for RNN block
        # Note: batch_first=False by default.
        # When true, inputs are (batch_size, sequence_length, input_dimension)
        # instead of (sequence_length, batch_size, input_dimension)
        self.lstm = nn.LSTM(input_size=input_size, hidden_size=hidden_size,
                            num_layers=num_layers, batch_first=True)
        # Fully connected layer
        self.fc = nn.Linear(hidden_size, num_classes)

    def forward(self, x):
        # Initialize hidden and cell states
        h_0 = Variable(torch.zeros(
            self.num_layers, x.size(0), self.hidden_size))# 上一个时间步的预测值
        c_0 = Variable(torch.zeros(
            self.num_layers, x.size(0), self.hidden_size))# 记忆单元 h0 = sigmod(c0)
        '''
            送进来的每条样本都生成记忆单元向 量
            (层数,样本数量,记忆单元长度)
            (1,724*0.7,5)

        '''
 
        # Propagate input through LSTM
    
        _, (h_out, _) = self.lstm(x, (h_0, c_0)) # 取得最后的输出结果  # 此处分别是 y1-y7,中间结果y7,要送入下一步的记忆单元c
        h_out = h_out.view(-1, self.hidden_size)# 行列变换  (n条样本,5) 每个样本的特征数是5 
        out = self.fc(h_out)# 连接一个全连接层 输出最后的结果h7
        return out
    


# Instantiate RNN model
lstm = LSTM(num_classes, input_size, hidden_size, num_layers)

# Set loss and optimizer function
criterion = torch.nn.MSELoss()    # mean-squared error for regression
optimizer = torch.optim.Adam(lstm.parameters(), lr=learning_rate)

# Train the model
for epoch in range(num_epochs):
    outputs = lstm(trainX)# 一次性把所有训练样本都输入进来 没有一批批用batchsize送数据
    optimizer.zero_grad()# 对每个epcho 偏导数置0 防止持续累积 
    # obtain the loss function
    loss = criterion(outputs, trainY)
    loss.backward()# 计算偏导数
    optimizer.step()# 更新参数
    print("Epoch: %d, loss: %1.5f" % (epoch, loss.item()))

print("Learning finished!")

# Test the model
lstm.eval()# 关闭训练技巧
t est_predict = lstm(testX)

# Plot predictions
test_predict = test_predict.data.numpy()
testY = testY.data.numpy()
plt.plot(testY,c='y')
plt.plot(test_predict,c='b')
print(testY.shape)
print(test_predict.shape)
plt.xlabel("Time Period")
plt.ylabel("Stock Price")
plt.show()

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-04-01 23:22:47  更:2022-04-01 23:26:18 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/9 0:51:51-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码