IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 【Pytorch神经网络理论篇】 48 图片分类模型:ResNet模型+DenseNet模型+EffcientNet模型 -> 正文阅读

[人工智能]【Pytorch神经网络理论篇】 48 图片分类模型:ResNet模型+DenseNet模型+EffcientNet模型

?

1 ResNet模型

?在深度学习领域中,模型越深意味着拟合能力越强,出现过拟合问题是正常的,训练误差越来越大却是不正常的。

1.1 训练误差越来越大的原因

在反向传播中,每一层的梯度都是在上一层的基础上计算的。随着层数越来越多,梯度在多层传播时会越来越小,直到梯度消失,于是随着层数越来越多,训练误差会越来越大。

ResNet模型的动机是要解决网络层次比较深时无法训练的问题,借鉴了高速网络模型的思想,设计出了一个残差连接模块。这种模块可以让模型的深度达到152层。

1.2 残差连接的结构

在标准的前馈卷积神经网络上,加一个直接连接,绕过中间层的连接方式,使得输入可以直达输出。

1.2.1 残差连接的结构图

1.2.2 残差连接的定义描述

?1.3? 残差连接的原理

残差连接通过将原始的输入绕过中间的变化直接传给Addiion,在反向传播的过程中,误差传到输入层时会得到两个误差的加和,一个是左侧的多层网络误差,一个是右侧的原始误差。左侧会随着层数变多而梯度越来越小,右侧则是由Addition直接连到输入层,所以还会保留Addition的梯度。这样输入层得到的加和后的梯度就没有那么小了,可以保证接着将误差往下传。

1.3.1?残差连接的原理

这种方式看似解决了梯度越传越小的问题,但是残差连接在正向同样也起到作用。

由于正向的作用,网络结构是并行的模型,即残差连接的作用是将网络串行改成并行。

这就是lnception V4模型结合残差网络的原理,没有使用残差连接,反而实现了与Inception-ResNet V2模型等同的效果的原因。

2 DenSeNet模型

DenseNet模型于2017年被提出,该模型是密集连接的卷积神经网络CNN,每个网络层都会接受前面所有层作为其输入,也就是说网络每一层的输入都是前面所有层输出的并集。

2.1?DenSeNet模型的网络结构

2.1.1?DenSeNet模型

每一个特征图都与前面所有层的特征图相连,即每一层都会接受前面所有层作为其输入。对于一个L层的网络,DenseNet模型共包含L(L+1)2个连接。

2.1.2??DenSeNet模型图

2.2?DenseNet模型的优势

  1. DenseNet模型的每一层都与前面所有层紧密连接、可以直达最后的误差信号,升梯度的反向传播,减轻梯度消失的问题,使得网络更容易训练。
  2. DenseNet模型通过拼接特征图来实现短路连接,从而实现特征重用,并且采用较小的增长率,每个层所独有的特征图比较小。
  3. 增强特征图的传播,前面层的特征图直接传给后面层,可以充分利用不同层级的特征。

2.3?DenseNet模型的缺陷

DenseNet模型可能耗费很多GPU显存,一般显卡无法存放更深的DenseNet模型,需要经过精心优化。

2.4 稠密快

稠密块是DenseNet模型中的特有结构。

2.4.1?稠密块的组成

稠密块中含有两个卷积层,这两个卷积层的卷积核尺寸各不相同(分别为1×1和3×3)。每一个稠密块由L个全连接层组成。

全连接仅在一个稠密块中,不同稠密块之间是没有全连接的,即全连接只发生在稠密块中。

3 EffcientNet模型

MnasNet模型是谷歌团队提出的一种资源约束的终端CNN模型的自动神经结构搜索方法。该方法使用强化学习的思路进行实现。

3.1?EffcientNet模型的步骤

1、使用强化学习算法实现的MnasNet模型生成基准模型EfficientNet-B0。
2、采用复合缩放的方法,在预先设定的内存和计算量大小的限制条件下,对EfficientNet-BO模型的深度、宽度(特征图的通道数)、图片尺寸这3个维度同时进行缩放这3个维度的缩放比例由网格搜索得到,最终输出了EfficientNet模型。

3.2 EffcientNet模型的调参示意图

  • 图1-12(a)是基准模型。
  • 图1-12(b)是在基准模型的基础上进行宽度缩放,即增加图片的通道数量。
  • 图1-12(c)是在基准模型的基础上进行深度缩放,即增加网络的层数。
  • 图1-12(d)是在基准模型的基础上对图片尺寸进行缩放。
  • 图1-12(e)是在基准模型的基础上对图片的深度、宽度、尺寸同时进行缩放。

3.3 EfficientNet模型的效果

在ImageNet数据集上Top-1准确率达到84.4%,Top-5准确率达到97.1%,但是其大小仅仅为已知最好深度卷积模型的1/8.4,而且速度比已知最好深度卷积模型快6.1倍。

EfcientNet模型满足了在不降低模型准确率的条件下,减少模型的计算量或内存需求(参见arXⅳ网站上编号为“1905.11946”的论文)。

3.4?MBConv卷积块

EficientNet模型的内部是通过多个MBConv卷积块实现。

3.4.1?MBConv卷积块特点

MBConv卷积块使用类似残差连接的结构,不同的是在短连接部分使用了SE模块,并且将常用的ReLU激活函数换成了Swish激活函数,还使用DropConnect层来代替传统的Dropout层。

3.4.2 MBConv卷积块的结构

3.4.3? Tip

在SE模块中没有使用BN操作,而且其中的Sigmoid激活函数也没有被Swish激活函数替换。

3.5?DropConnect

在深度神经网络中,DropConnect层与Dropout层的作用都是防止模型产生过拟合的情况。DropConnect层的效果会更好一些。

3.5.1?DropConnect层与Dropout层对比

DropConnect层:在训练神经网络模型的过程中,对隐藏层节点的输入进行随机的丢弃。

Dropout层:在训练神经网络模型的过程中,对隐藏层节点的输出进行随机的丢弃

3.5.2??DropConnect层与Dropout层结构图

?

? ?

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-04-04 12:11:32  更:2022-04-04 12:16:02 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/26 11:35:45-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码