IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 【目标检测】YOLOv3-SPP ,在YOLOv3中增加SPP模块 -> 正文阅读

[人工智能]【目标检测】YOLOv3-SPP ,在YOLOv3中增加SPP模块

SPP全称为Spatial Pyramid Pooling(空间金字塔池化结构)

参考资料:YOLO系列理论合集(YOLOv1~v3)

yolov3-spp深度剖析

一、YOLOv3模型结构

在这里插入图片描述

二、YOLOv3-SPP模型结构

在这里插入图片描述

三、SPP模块

对比上面两个图可以发现,YOLOv3-SPP就是在YOLOv3的Convolutional Set模块中插入了SPP模块,SPP模块结构如下:

在这里插入图片描述
可以发现,SPP模块由四个分支组成。为了保证Concatenate时候每个分支Tnesor的H和W相同,在进行 Maxpool 时要进行不同程度的Padding,输入每个分支的输入和输出的shape是相同的,均为[N,C,H,W]。经过Concatenate之后,对channel进行合并,得到的Tnesor为[N,4C,H,W],即channel变为4倍,H和W不变。

SPP模块实现了不同尺度的特征融合

YOLOv3-SPP的Convolutional Set模块为:

在这里插入图片描述

四、对YOLOv3-SPP模型结构的理解

仔细观察YOLOv3-SPP模型结构图可以发现,只有在产生最小尺寸的特征图的Convolutional Set中添加了SPP模块。按照正常思路来说应该在三个特征图之前都加上SPP模块才对呀,这是为什么呢?

当然三个都加也是可以的,但是有没有必要呢?

如下图所示,横坐标为输入图像尺寸,纵坐标为MAP。右上角的黄色圆点折线表示YOLOv3-SPP1,即只在一个预测分支中添加SPP模块的结果,绿色三角形折线表示YOLOv3-SPP3,即在三个预测分支中都添加SPP模块的结果。可以发现二者差别不大,因此选用YOLOv3-SPP1可以加快训练速度,降低模型训练时间。当然如此不考虑训练时间问题,只追求更高的精度(MAP),用YOLOv3-SPP3会更好。

在这里插入图片描述

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-04-06 23:10:15  更:2022-04-06 23:11:19 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/26 12:00:22-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码