IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 浅析全息技术通信方案和产业现状 -> 正文阅读

[人工智能]浅析全息技术通信方案和产业现状

近年,随着全息技术的发展应用,全息通信正在逐步走向可能。全息显示技术利用干涉法记录物体表面散射光波的相位和振幅等信息,再利用衍射原理重建物体的三维图像。全息通信是利用全息显示技术,捕获处于远程位置的人和周围物体的图像,通过网络传输全息数据,在终端处使用激光束投射,以全息图的方式投影出实时的动态立体影像,并能够与之交互的新型通信方式。未来 6G 技术的发展,将会提供更强的通信网络,这将逐步让全息通信业务的发展应用成为可能。

一、全息技术,进入数字新时代

“全息”(Holography)即“全部信息”,这一概念首次在1947 年提出,由英国匈牙利裔物理学家 Dennis Gabor 发明,并因此获得了1971 年的诺贝尔物理学奖。全息技术是一种利用干涉和衍射原理来记录物体的反射,透射光波中的振幅相位信息进而再现物体真实三维图像的技术。它与物理学,计算机科学,电子通信及人机交互等学科领域有着密切的联系。

随着计算机技术的成熟,人们拓展了动态计算全息术及其运算、彩色全息术、计算全息三维显示、计算全息光学加密、计算全息编码等领域,研究者们正在努力突破算力、设备和算法的制约,向着最为理想的全息三维显示发展。

全息技术的提出,不仅是一种技术的发明,更是一种思路的提出,借由全息技术的技术原理,通过物波与参考波叠加干涉来记录物体信息的思路被应用到很多其他领域,进而衍生出了一些类似的领域,比较有代表性的有:声全息、模压全息、红外全息、微波全息、光学扫描全息术等。

▲全息技术衍生领域

根据成像原理及呈现效果的不同,将全息成像技术分为三种类型:2D 全息、3D 全息、理想全息。2D 全息指利用较为简单的反射、折射原理或者视觉残留制造可视角度有限的裸眼三维效果。包括空气成像、旋转风扇屏、雾屏/雾幕以及立体光栅显示器。3D 全息是当前最接近于理想全息显示效果的全息显示技术,包含的技术主要有全息光场、点云、电离空气、光镊、声镊和体全息技术。理想全息是基于计算全息图的真正意义上的狭义全息,通过计算全息图的制作与再现完成 3D 对象的全息显示。

全息术的发展总共经历了三个主要阶段:传统光学全息,数字全息和计算全息。20 世纪 60 年代末期第一台激光器问世,此时全息技术启发了众多衍生领域,并在数字全息被提出时达到峰点。然而受制于CCD 及计算设备的不成熟,数字全息的研究陷入了低谷。随着 21 世纪初期数码摄像机的普及及计算机技术的成熟,数字全息领域中产生了计算全息这一分支,由于其不依赖实物而是用计算机模拟物体光学分布制作全息图,迅速成为热门研究话题。

▲全息技术发展历程图

二、全息通信,科幻般的通信方式

而全息通信业务是基于裸眼全息技术的高沉浸、多维度交互应用场景数据的采集、编码、传输、渲染及显示的整体应用方案,包含了从数据采集到多维度感官数据还原的整个端到端过程,是一种高沉浸式、高自然度交互的业务形态。

6G 技术将支持人类对物理世界进行更深刻的理解与感知,帮助人类构建虚拟世界与虚实融合世界,从而扩展人类的活动空间;同时支持大量智能体互联,从而延伸人类的体能和智能水平。结合 6G 技术、全息通信愿景与未来通信技术发展趋势,以扩展活动空间与延伸体能智能为基线,进行扩展与挖掘可获得包括数字孪生、高质量全息、沉浸 XR、新型智慧城市、全域应急通信抢险、智能工厂、网联机器人、自治系统等相关 6G 全息通信场景与业务形态,贴合6G 的愿景,体现“人-机-物-境”的完美协作。

根据依赖技术及给予用户体验的不同,未来 6G 时代,全息通信的应用场景将有七大类,分别是:带宽远程管理,低时延精密辅助,超智能信息网络,多维度交互体验,高质量人像互动,临场态全息展示和沉浸式全息影像。

▲6G 全息通信应用场景总图

1、多维交互体验

一直以来,人们都在追求实现真实度与参与感更强的显示技术与体验效果。未来 6g 时代下,通讯网络传输性能的极大提高让全息技术及多模态交互技术落地,在这些技术的赋能下,用户可以体验到更丰富的交互通道,交互效果更为真实。在多维度交互体验场景下,可以采集来自物体和环境全真数据,应用全息技术去构建可供用户深度参与交互的体验场景,丰富沉浸式的多通道交互手段,提供丰富新颖的交互体验。

多维度交互体验场景多用于体验增强型业务,要求能够将采集到的环境与物品数据高性能传输以构建沉浸化场景,因此要求通讯网络带宽及支持流量密度能力提出更高要求。

多维度交互体验场景下,显示端可以生成沉浸性更强、互动程度更高的成像效果,为用户带来更丰富的感官体验。因此,多维度交互体验场景可以广泛应用于泛娱乐,文化教育等领域,通过构建丰富多维的可交互显示效果,为用户提供全息娱乐,全息文化教育等服务。在 6G 多维度交互体验场景中,家庭XR 娱乐借助虚拟现实、通道交互等技术,建立高显示质、高交互程度的显示场景,让用户高沉浸性地进行家庭游戏,虚拟运动等娱乐项目。此外,6G 通讯网络还让全息观影成为可能,用户可以观看立体感和全真程度极高的全息画面,并通过多个通道与设备进行交互,收获更好的观影体验。

多为交互体验的一个重要领域是全息游戏。虽然全息游戏使用场景最为广泛、发展时间最久,但尚未运用全息技术并实现交互。目前,市场上并没有真正意义上的全息游戏。游戏与全息技术结合必将使游戏环境的逼真度及玩家游戏体验达到顶峰。

▲全息游戏应用布局图

2、沉浸式全息影像

现阶段沉浸式体验方式为虚拟现实或增强现实以及两种的组合版,且由于显示精度及场景数据下载速率等问题,增强现实体验还未能够达到商用的标准。在6G 时代将打破桎梏,用户可以通过裸眼全息的方式营造全场景效果,提供用户完全沉浸的体验。

沉浸式全息影像场景要在相对固定的系统环境下,以来超低时延与超高带宽的通信才能为用户带来极致体验。因此对传输的要求较高,同时为了加强体验的沉浸感对交互的要求也更为苛刻。同时在要在裸眼的情况下实现,对展示的载体及媒介将是前所未有的挑战,只有做到极致才能做到沉浸式体验。

通过发挥 6G 技术和裸眼 3D 显示技术,沉浸式全息影像将大大提高用户的体验感,广泛应用于生活娱乐场景。其中典型场景包括全息服务与销售、全息新闻与舞美、全息影院、全息体育、楼盘样板间展示及沉浸式主题餐厅:

▲沉浸式全息影像场景总图

3、超智能信息网络

随着人工智能技术的研究与应用推进,智能化早已成为各个领域追求的目标。在超智能网络场景下,6G 通讯网络的大带宽低时延与广连接特性,让采集到的大规模数据能够上传后结合大数据、人工智能等技术进行综合处理分析,让6G为全域智能化赋能,实现 AI 、数字孪生与 6G 网络的紧密结合。

超智能信息网络场景普遍需要采集环境与场景数据,且具备高网络适应性与情景感知能力,甚至深度应用人工智能技术,因此此类场景对通讯网络提出了高传输带宽,强网络态势感知与调节能力,高 AI 融智程度的要求。

随着 6G 与人工智能技术的融合落地,采集端产生的巨量数据和高性能数据传输将为人工智能处理与分析求解提供坚实数据层基础,人工智能将能够得以感知更多维更全面数据并提升数据传输处理速度与远程数据交互能力,因此超智能信息网络场景可以运用于自动驾驶、智能机器人等与人工智能紧密结合领域,让人工智能“思维敏捷”的同时也能“手眼通天”。超智能信息网络场景下可以提供自然环境和城市环境的数字化管理。通过采集城市内的交通,治安等多源多维数据,智能体将可以实现基于城市全面数据的智能化实时监测与分析,调配城市资源,进行异常状况告警。也可以通过采集车辆周边信息与其他车辆信息等获取海量数据,经过智能体分析决策后,提供自动驾驶服务。

4、高质量人像互动

高质量人像互动将带来新的沟通方式和体验,让交流更加真实零距离,跨越空间和时间。通过自然逼真的视觉还原,满足人、物及其周边环境的三维动态交互,将实现用户对于人与人、人与物、人与环境之间的沟通需求。

高质量人像互动场景对信息通信系统提出更高的要求,需要做到人、物和环境的高质量数据采集传输及三维下的多模态交互,因此数据采集传输方面需要高精度的采集设备及足够快的全息图像传输能力和强大的空间三维显示能力。同时,为了让用户享受到极致的沉浸式体验,对三维模式下的交互的方式将是一大挑战。未来全息通信的广泛应用会使人与人之间的互相交流和会议将呈现多种丰富的形态,全息通信可用于远程培训和教育应用程序,为学生提供参与和交互能力,并具备更多的互动性,使人在该模式下更能好的去记忆及学习,实现真正意义上的跨越空间去实时沟通。还可以实现跨时空的互动,通过录入逝去亲人的身体数据,并且配合 AI 技术,实现跨时空的陪伴。

5、新态势模型展示

当前全息投影的场景相对固定且设备比较笨重,而且对环境灯光有一定的要求,所以场景相对有限。在 6G 技术背景下,可以实现小场景的光场全息,通过光场 3D 模型的展示能丰富我们日常的日常生活和提高我们工作的效率,从而降低操作成本的同时丰富交互体验。

新态势模型展示场景规模均较小,因此数据传输体量小,要求的数据质量无需很精密,但此场景着重用户与场景模型的交互操作,因为三维的数据信息承载比二维更加丰富且有层次,用户在获取信息时能更加直观且精准。

新态势模型展示场景可以让现实与全息完美结合,场景不需要宏大,但是互动性或展示更加要真实,虽然三维的信息获取更加方便但是对内容的要求反而比现阶段更加严格,用户可借助物理传感器,通过手势交互或体感交互对模型进行交互操作。其中典型应用场景分别是全息文化、全息教育、科普教学及数字化互动体验餐厅。

▲新态势模型展示场景总图

6、高带宽远程管理

随着生产、生活信息化进程的不断推进,越来越多的现实物体将会映射入数字世界,实现多方位监控与感知。在高带宽远程管理场景下,诸如传感器等采集与监控设备将会产生海量的数据,供给远端业务方使用。届时6G 将提供超大带宽的远距离数据传输业务,帮助用户获取远端实时数据,得到全息态势信息,进行大规模的数据远程传输、处理及呈现。

高带宽远程管理场景的突出特点是数据传输体量大,需要远距离数据传输。因此高带宽远程管理场景的大规模数据传输特性,要求通讯网络具备大传输带宽,高吞吐量的能力,并且能够在超远距离传输下仍保持较好的稳定性。

将 6G 通讯网络应用于道路监控等态势采集作业后,6G 网络的大带宽,低时延等特性将会大幅提升态势监控的效率,让工作人员通过全息呈现等技术足不出户便能查看远程某物或场景的全方位信息,改善了工作体验。因此高带宽远程管理类场景在工农业业作业监控,特殊环境探查等行业有着较广泛分布。例如在采矿业,矿洞内采集端通过传感器多方位采集矿洞内多维环境信息后,就能将海量全真数据传输至远端中控室内呈现,辅助现场工作人员掌握矿下环境信息测、判别矿下环境异常状况,并对事故点进行全方位的细节检查。此外,在农作物种植业中,通过传感器采集到农作物的生长状态、周边环境等多源信息并进行远程传输,在中控室中处理呈现,让农业专家能全方位掌控农作物的态势信息,并针对作物问题给予远程指导。

7、低时延精密辅助

传统通讯网络存在的固有数据通信延迟问题,将会在6G 网络中得到大幅度减少。6G 网络的极低延迟,将会让端到端之间的数据传输质量更高,联结更加紧密,因此在需要高实时性传输数据的低时延精密辅助场景下,6G 网络能实现远程数据高质量同步,促进沟通效率、资源分配效率的提升,让万物互联真正实现。

低时延精密辅助场景的突出特点是场景需求亟待性大,传输数据质量高,部分子场景应用了高分辨率显示技术,要求端到端的数据传输的即时性更高且传输可靠性更强。因此,低时延精密辅助场景对 6G 网络提出了高数据传输上下行速率,低空口时延,强网络稳定性的要求。

通过发挥 6G 网络的低时延优势,通讯网络的安全性与稳定性将会大大提高,因此低时延精密辅助场景将能够在医疗,制造业等领域广泛应用。低时延精密辅助场景其中,6G 网络让远程医疗的实现成为可能。医院的专科医生在高性能通讯网络的赋能下,能在触觉,视觉等多维数据与病人端交互中,对病人远程实施远程问诊。此外,工作人员通过 6G 通讯网络,在安全场所传输手部移动数据,操纵实验室内机器人进行高危化学实验操作,提高了特殊场所下作业的安全性。

8、全息通信网络需求

全息高精度展示及动态交互效果,对全息通信也提出了相应要求,分别是超高带宽、超低时延、网络算力、同步性及网络安全五个方面。

▲全息通信网络需求

超高带宽。与传统高清和 3D 虚拟视频相比,全息通信传输的流媒体对网络带宽的需求将达 Mbit/s 级。摄像头传感器(如微软 KinectforWindowsv2)输出的1080P图像,每个像素有 4byte 的彩色数据,深度图像的分辨率为512dpi×424dpi,每个像素有 2byte 的深度数据,相当于每帧 70.4MB 的原始数据。并且,随着传感器和视点数量的增加,在更高的分辨率和帧速率下,需要的网络带宽会更高。对于 70 英寸显示屏,全息通信需要约 1Tbit/s 的网络带宽。

使用更高效的图像压缩技术和编解码方案(例如H.266),在一定程度上可以缓和全息通信的带宽需求,然而未来网络仍需要超高的带宽。对毫米波、太赫兹、可见光等更高工作频段的研究表明,未来网络可提供的用户体验速率能达到100Gbit/s,峰值速度超过 1Tbit/s。与此同时,开发这些新频谱对天线和射频技术亦提出了更大的挑战。

超低时延。与 AR/VR 等强交互沉浸式应用的要求相同,为了让用户获得身临其境的感觉,全息通信要求网络必须提供小于 1ms 的端到端时延。

RDMA(remote direct memory access,远程直接数据存取)技术的出现,解决了网络传输中客户端与服务器端数据处理所产生的时延。它将数据直接从一台计算机的内存传输到另一台计算机,无须双方操作系统的介入。与传统的TCP/IP 通信模式相比,RDMA 允许高吞吐、低时延的网络通信,该技术可以进一步降低网络传输时延,在未来网络的应用场景中具有巨大的发展潜力。

网络算力。实现全息通信的过程可描述为,首先通过采集端设备获取对象信息,计算生成全息图,经过编码压缩后进行网络传输,在终端解码后重建对象的全息图并显示出来。由于全息图包含的信息和数据量巨大,计算时间过长,除了会带来极大的带宽负担外,还会造成很大的 MTP(motion to photons,运动到成像)时延。为了满足用户沉浸式体验,对 AR/VR 等强交互应用而言,MTP 时延要求在20ms以内,对全息通信则要求 10ms 甚至更低。

随着云计算和 MEC(mobile edge computing,移动边缘计算)技术的快速发展,未来网络可通过云端和边缘端的快速部署解决全息通信的算力需求。

多维度信息同步性。全息图的生成和传输包含了多个维度的信息,这些信息来源于视频、音频、触觉、嗅觉、味觉等。只有当各个维度的信息保持严格同步,才能给用户身临其境的感觉。因此,在传输过程中,来自不同传感器、不同角度的物体生成全息图的各个并发媒体流之间需要保持相当严格的同步。如何智能化管理这些并发流对未来网络是个相当大的难题和考验。

网络安全。通过全息通信传输的全息图中含有大量的信息数据,包括人脸特征、声音等敏感信息,需要网络提供绝对安全的保障,而现有安全技术的使用会增加端到端时延。对时延和安全性的折中考虑是未来网络需要面对的难题之一。

三、市场已达百亿级别,产业链全解析

目前,全息技术在军事、教育、展示、医学领域均取得了巨大的应用,我国从事全息投影领域的企业数量也从十几家发展到千余家,市场容量已上升至百亿级别。随着科技的进步和各项技术瓶颈的突破,全息将迎来新一轮的发展。在不久的将来,全息投影将会在工业、商业、医学、教育、国防等各个领域得到广泛运用,产生巨大的经济和社会效益,对人类文明的历史产生颠覆性的影响。

全息行业产业链分为上游、中游、下游三个部分,分别代表了全息行业的基础层、企业层和产品应用层。

(1)上游基础层

主要包括全息材料研发与制造商、全息设备零件商、全息技术服务器商和全息芯片商, 上游各个行业根据产业链后端的不同需求提供如传感器、芯片和服务器等各方面的支持。

(2)中游企业层

作为全息产业链中服务覆盖流程最长、服务内容最多样的部分,其主要包括全息内容公司、设备制造公司和综合服务公司三大类别。其中全息内容公司提供全息游戏、全息剧场、全息广告等内容服务;设备制造公司负责生产制造全息投影产品、全息显示器等服务载体;综合服务公司提供从技术支持、内容配合到实际部署的全流程服务。

(3)下游应用层

涵盖了市场上绝大多数的全息技术实际应用场景,是整个产业链中用户感知最强的部分。其产品形态多种多样,主要包括眼镜类、3D 屏幕类、空气成像类、全息存储类和全息计算类产品等等。

全息行业产业链的层级结构如下图所示:

▲全息行业产业链

1、上游职能与结构

全息产业链的上游以服务器、半导体、材料和零件企业为主,为中下游企业提供基础硬件服务。主要包括云计算、云服务器、服务器硬件设备、芯片、电路元器件、光学器件、有机材料、信号处理设备以及专业仪器。

整个产业中的算力支持由云计算、云服务器和服务器硬件设备提供,包括图像的采集、处理、传输编码等;芯片或微型集成电路是所有设备的核心处理与控制逻辑单元;电路元器件与光学器件是完成全息业务的支撑;信号处理设备用于衔接不同部分,在整套业务逻辑中的各环节之间进行信号传递;全息图像的采集清晰度和呈现效果由专业仪器决定,例如镜头、投影纱幕、材料、零件等。

▲上游结构

(1) 头戴式显示领域

上游主要提供计算、存储、连接芯片,小型显示面板,包括头部追踪可见光传感器、眼 动追踪红外传感器,深度传感器,IMU 传感器在内的各类传感器以及电池等。其中小型显示面板负责将头戴式的设备中的画面呈现在人眼前,各种传感器主要用于信息采集,将外界信号传入设备并转换为可处理的数字形式。

(2) 裸眼 3D 屏幕领域

上游提供 LED 中间体材料,全息膜,高速视觉传感器,全息光栅,以及显示芯片组,液晶面板,供电模组等,其中各种中间体材料和全息膜均属于材料范畴。裸眼对 3D 效果的显示要求更为严格,需要采用精度更高的传感器,例如液晶面板,全息光栅等。

(3) 空气成像领域

上游主要提供等效负折射率平板透镜等光学器件。将光线在空间中会聚成像是空气成像领域与前两种领域最大的区别,其更侧重于对光线的处理,因此需要更多的折射反射等光学器件。全息产业链中除了微软、索尼这样的行业巨头,同时广泛存在着年轻的创新企业,靠着技术创新与发明,探索新的道路,使得整个产业链充满着朝气、活力与机遇。

上游公司是产业链的源头,目前在基础材料、核心技术上已经可以提供必要的保障,尤其在头戴式显示领域,已经拥有了高精度的传感器和连接芯片,能够实现信号采集、输入和处理。但在裸眼 3D 和空气成像领域,由于对显示的3D 效果要求过于严格,目前在材料和技术上仍有许多困难需要所有企业共同克服。

2、中游职能与结构

整机产品商、集成服务商和内容设计商处于全息产业链的中游。依据面向实际场景中的需求,在上游技术与服务的支持下,提供整机产品销售、全链路服务和全息产品内容设计、建模与呈现等多种类型的服务。

▲中游结构

(1) 整机产品领域:中游各类公司主要提供全息投影产品、全息显示器产品、全息AR 产品和全息激光产品等设备的销售和维护服务。

(2) 集成服务领域:中游各类公司提供全息解决方案,覆盖休闲娱乐、购物体验、视频通话等众多场景,从全息应用的需求挖掘、场景研究到全息产品的部署与维护,集成服务领域的各个企业打通了全息应用的整个链路,面向企业、个人等多方用户群体提供完整的全息体验。

(3) 全息内容设计领域:中游各类公司主要提供大众最直观感受的全息内容,由于终端用户与场景的差异众多, 各个公司在内容设计的定位上也有较大差异,主要涉及全息广告、全息剧场、全息婚礼、全息游戏和全息偶像等几个常见的领域。

中游企业分别面向不同的细分领域,如内容生产商、全息集成服务提供商、全息激光厂商、全息采集厂商、以及全息显示设备制造商。整体而言,中游企业在整机产品和服务提供上已经比较完整,结合上下游企业,使得整个全息产业链结构更加丰富。但是由于全息并未真正走入大众生活,因此在内容设计和互动体验等方面还有所欠缺,这也是全息在未来发展过程中最需要重点挖掘的方向。

3、下游应用与布局

空气成像是利用光学原理,将影像在空中立体呈现的显示技术.空气成像正在从早期通过营造雾幕等承接介质进行立体内容的空间展示,逐渐向着通过电离空气、声镊、光镊等技术改变空气性质的方向发展。空气成像类产品可分为两类:

第一类是需要承接屏幕的空气成像:如雾幕成像、旋转风扇空气成像等。

第二类是不需要承接屏幕的空气成像:此类全息产品技术实现比较困难,实用性相对较差,大多停留在概念阶段,未实现量产。如电离空气成像技术代表公司 Aerial Burton,光镊全息显示技术代表团队 Arthur Ashkin,声镊全息显示技术代表团队英国撒赛克斯大学。以 Asukanet 公司的ASKA3D Plate 和东超科技为代表的负折射平半透镜面板等。这些产品通过光场重构技术,在医疗、电梯虚拟按键、展览展示等领域有一定应用。配合成熟的体感设备,可以实现可交互式的空气全息。

(1) 雾幕投影设备:雾幕立体成像系统技术也被称为空气成像、雾屏成像。其原理是空气屏幕系统可以制造出由水蒸气形成的雾墙,投影机将画面投射在上面,由于空气与雾墙的分子震动不均衡,可以形成层次和立体感很强的图像。雾幕投影设备包括专有的投影机和基本零件,该系统形成图像的主要利用空气以及一个小型机柜,不使用特殊的化学物质。

(2) 旋转 LED 风扇投影设备:旋转 LED 风扇投影是利用了人眼的视觉暂留现象,采用旋转LED 灯条进行空气成像。旋转 LED 风扇投影被广泛应用于展示展览、广告传媒、舞美表演等场景,其优点是价格便宜、易于实现。

(3) 360°全息投影系统:360 °全息投影系统也被称作 360 度全息和 360 度全息成像,360 度全息投影。它是由透明材料制成的四面锥体,投影机与全息膜呈45°投射,观众的视线能从任何一面穿透它。通过表面镜射和反射,四个视频发射器将光信号发射到这个锥体中的特殊棱镜上,汇集到一起后形成具有真实维度空间的立体影像。

(4) 全息显示立体屏:全息显示立体屏主要应用了激光旋转投影技术。激光旋转投影技术由于噪音和不安全性,并未被广泛使用。

(5) 可交互式全息空气成像面板:可交互式全息空气成像面板通过改变玻璃或树脂的微观结构,利用光场重构原理,让光线在这种微观结构里多次振荡、反射、折射,将发散的光线在空中重新汇聚成实像。这种空气成像技术投影在空中的影像和物体均为实像,因此可以称之为真正的全息影像。

(6) 电离气体成像:日本 Scienceand Technology 公司利用氮气和氧气在空气中散开时,混合成的气体变成灼热的浆状物质在空气中形成一个短暂的3D 图像。这种方法主要是不断在空气中进行小型爆破来实现。
Aerial Burton 公司通过电离空气成像方法,使用1KHz 的脉冲激光,通过3D 扫描仪将激光反射并聚焦到上方空气的某一确切位置来传播激光。激光电离该位置空气分子,通过各点组成的光的闪烁图显示整个全息图。Holovect 3D 全息图投影仪根据光的反射、折射与漫射等现象,使用自行研发的技术,控制立体方形范围中空气的折射率,让激光能在特定的位置产生反射与折射。介由调整激光以及不同区块的空气折射率,Holovect 可以根据光线的空间信息来绘制出画 3D 立体图形。

(7) 光镊/声镊空气成像:光镊成像相比于电离空气成像技术有更好的安全性,该应用的一大亮点是支持触感反馈与触觉交互,缺点是分辨率低,需要稳定的环境及亮度低。2018年Arthur Ashkin 团队采用光镊技术,利用一束会聚激光在三维方向上控制微粒。英国萨塞克斯大学团队采用“多模式声镊显示”装置,通过扬声器阵列释放的超声波引 起空气震荡,在三维空间中产生随时间快速变化的空气压强,空气压强的变化会产生声辐射 力,从而推动粒子的快速运动。

(8) 产业成熟度:全息雾幕,LED 风扇全息投影,360°全息投影技术实现难度较低,目前已投入量产,应用在广告,传媒等领域,总体成熟度较高。全息空气成像面板,光镊/声镊空气成像,电离空气成像目前限于技术实现,成本等问题还未实现量产,因此成熟度相对较低。

从全息产业发展方向与需求市场来看,目前成熟度较低的不需承接屏幕的空气全息技术更加具有前景,是目前各厂商的主要目标发展方向。

智东西认为,全息场景将虚拟影像与用户真实影像进行高度融合,带来极富冲击性的体验。而且,伴随元宇宙概念的涌现与普及,全息作为重要的底层技术将影响元宇宙的发展进程,并实现更深度的应用体验。

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-04-07 22:41:41  更:2022-04-07 22:43:59 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/26 11:48:45-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码