IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 基于隐马科夫模型,HMM用于中文分词 -> 正文阅读

[人工智能]基于隐马科夫模型,HMM用于中文分词

HMM用于中文分词

一、在分词、分句前用规则处理句子

#在分词前用规则处理句子
def preprocess(oriSentence):
???
#删除后缀
???
oriSentence = deleteTMword(oriSentence,'\r')
??? oriSentence = deleteTMword(oriSentence,
'\n')
??? oriSentence = deleteTMword(oriSentence,
'\t')
???
#load the rules
??? #
加载规则
???
deletes = Rule.Rules["DELETE"]
??? updates = Rule.Rules[
"CHANGE"].keys()
???
#we must delete the whitespaces.
??? #
对于空格进行删除
???
deletes.append(' ')
??? deletes.append(
' ')
??? sentence =
''
???
for char in oriSentence:
???????
#对于词组进行删除操作
???????
if(char in deletes):
??????????? sentence +=
''
???????
#对词组进行替换操作
???????
elif(char in updates):
??????????? sentence += Rule.Rules[
"CHANGE"][char]
???????
#不进行操作
???????
else:
??????????? sentence += char
???
return sentence

二、获取文本中所有的句子

##将一个段落切割成几个最简单的句子
def segmentSentence(text,isForSegmentWord=False):
???
#载入需要进行切割的符号
???
lst = [',','!','?','…','','','','','"','“','”','\'','‘','’',':','',';','','—','(',')','','']
???
#是否需要进一步切分
???
if(isForSegmentWord):
???????
#these punctuations shouldn't cut the sentence.
??????? #
这些标点不应该删减句子。
???????
lst += ['','','','<','>']
???
#这里是对于输出格式的处理
???
assert isinstance(text, str)
??? text_seg =
""
???
for char in text:
??????? text_seg += char
in lst and '|' or char
??? sentence_lst = text_seg.split(
'|')
???
while('' in sentence_lst):
??????? sentence_lst.remove(
'')
???
return sentence_lst

三、获取文本中所有的词组

(1)解析离线统计词典文本文件,将词和词频提取出来,获取每个单词所有的前缀词,如果某前缀词不在前缀词典中,则将对应词频设置为0。

#Dict中的每个单词切成作为前缀,基于前缀词典,对输入文本进行切分,便于之后构造无环图
def generatePrefixDict():
???
global Possibility,PrefixDict,total,Dictionary_URL
??? fo = Lexicon.loadDict(Dictionary_URL)
??? PrefixDict = set()
??? FREQ = {}

??? for line in fo.read().rstrip().split("\n"):
??????? word,freq = line.split(
' ')[:2]
??????? FREQ[word] = float(freq)
??????? total += float(freq)
#calculate the total number of words
???????
for idx in range(len(word)): #generate the prefix dictionary
???????????
prefix = word[0:idx+1]
??????????? PrefixDict.add(prefix)
??? fo.close()
???
#将频率转化为可能性?????????????????????????????????
???
Possibility = dict((key,log(value/total)) for key,value in FREQ.items())

(2)构造有向无环图,对于每一种划分,都将相应的位置相连:

从前往后依次遍历文本的每个位置,对于位置k,首先形成一个片段,这个片段只包含位置k的字,然后就判断该片段是否在前缀词典中,如果这个片段在前缀词典中,

1.如果词频大于0,就将这个位置i追加到以k为key的一个列表中;

2.如果词频等于0,则表明前缀词典存在这个前缀,但是统计词典并没有这个词,继续循环;

如果这个片段不在前缀词典中,则表明这个片段已经超出统计词典中该词的范围,则终止循环;然后该位置加1,然后就形成一个新的片段,该片段在文本的索引为[k:i+1],继续判断这个片段是否在前缀词典中。

?

#对于每一种划分,都将相应的位置相连,构造有向无环图
def getDAG(sentence:str):
???
global PrefixDict,Possibility
??? DAG = {}
??? N = len(sentence)
???
for i in range(N):
??????? lst_pos = []
???????
#这个列表是保存那些可以用第i个字符组成单词的字符的索引。
???????
j = i
??????? word = sentence[i]
??????? lst_pos.append(i)
???????
while(j<N and word in PrefixDict):
????? ??????
if(word in Possibility):
???????????????
if(lst_pos[0]!=j):
??????????????????? lst_pos.append(j)
??????????? j+=
1
???????????
word = sentence[i:j+1]
???????
#把这个第i个列表放入DAG[i]
???????
DAG[i]=lst_pos
???
return? DAG

(3)函数根据已经构建好的有向无环图计算最大概率路径,动态规划查找最大概率路径,计算每个开始字符的最可能路线,找出基于词频的最大切分组合

#动态规划查找最大概率路径,计算每个开始字符的最可能路线,找出基于词频的最大切分组合
def calculateRoute(DAG:dict,route:dict,sentence:str):
???
#from right to left
???
global Possibility , min_Possibility
??? N = len(sentence)
??? route[N]=(
0.0,'')
???
#In fact, it is a recurse procedure.
???
for i in range(N-1,-1,-1):
??????? max_psblty =
None
???????
max_cur = i
???????
for j in DAG[i]:
???????????
#to consider every possible word
???????????
word = sentence[i:j+1]
??????????? posb1 = Possibility.get(word,min_Possibility)
??????????? posb2 = route[j+
1][0]
??????????? posb = posb1 + posb2
???????????
if max_psblty is None:
??????????????? max_psblty = posb
???????????
if(posb>=max_psblty):
??????????????? max_psblty = posb
??????????????? max_cur = j
??????? route[i] = (max_psblty,max_cur)

(4)对于不在词典中的词,使用HMM的方法,对这些词进行标注

__init__.py 实现了HMM模型识别未登录词;

prob_start.py 存储了已经训练好的HMM模型的状态初始概率表;

prob_trans.py 存储了已经训练好的HMM模型的状态转移概率表;

prob_emit.py 存储了已经训练好的HMM模型的状态发射概率表;

1)获取无法识别单词的索引,作为标志来分割句子

#删去不认识的句子,这句话可以用engchs处理
def cutUnrecognized(sentence):
???
#first we need to find all indexes of abnormal char
??? #
首先我们需要找到异常单词的所有索引
???
eng_dgt_start,eng_dgt_end = findEngAndDigits(sentence)
???
cur = 0
???
N = len(eng_dgt_start)
??? L = len(sentence)
??? words = []
???
#And then we need to ues them as the flag to segment the sentence
??? #
然后我们需要将它们作为标志来分割句子
???
if(N!=0):
???????
for t in range(N):
??????????? begin = eng_dgt_start[t]
??????????? end = eng_dgt_end[t]
???????????
if(t==0 and begin!=0):
??????????????? buf = sentence[
0:begin]
??????????????? words += cutWithHMM(buf)
???????????
if(t!=N-1):
??????????????? next_start = eng_dgt_start[t+
1]
??????????????? buf = sentence[begin:end+
1]
??????????????? words.append(buf)
??????????????? buf = sentence[end+
1:next_start]
??????????????? words += cutWithHMM(buf)
???????????
else:
??????????????? buf = sentence[begin:end+
1]
??????????????? words.append(buf)
???????????????
if(end!=L-1):
??????????????????? buf = sentence[end+
1:L]
??????????????????? words += cutWithHMM(buf)
???
else:
??????? words += cutWithHMM(sentence)
???
return words

2)调用viterbi算法,求出输入句子的隐藏状态,然后基于隐藏状态进行分词。
def cutWithHMM(sentence):
???
#possess the english and digits
??? #find their indexes
???
init_P()
??? words = []
???
#Viterbi是隐马尔科夫模型中用于确定(搜索)已知观察序列在HMM;下最可能的隐藏序列

??? #通过viterbi算法求出隐藏状态序列
???
prob,path = viterbi(sentence)
??? buf =
"" # temporary variable

#基于隐藏状态序列进行分词
??? for i in range(len(sentence)):
??????? flag = path[i]
???????
if(flag=='S'):
??????????? buf = sentence[i]
??????????? words.append(buf)
??????????? buf=
""
???????
elif(flag=='B'):
??????????? buf = sentence[i]
???????
elif(flag=='M'):
??????????? buf = buf + sentence[i]
???????
elif(flag=='E'):
??????????? buf = buf+sentence[i]
? ??????????words.append(buf)
??????????? buf=
""
???
return words

3viterbi算法的实现

MIN_FLOAT = -3.14e100
#states
States = ('B','M','E','S')
#every possible previous of each state
PrevStatus = {
???
'B':('E','S'),
???
'M':('M','B'),
???
'S':('S','E'),
???
'E':('B','M')
}

def viterbi(obs):
??? V = [{}]
??? path={}
???
#possess the first char
???
for s in States:
???????
#this state's possibility is the start * emit
???????
V[0][s] = start_P[s] + emit_P[s].get(obs[0],MIN_FLOAT)
???????
#record this path
???????
path[s] = [s]
???
#poseess the other chars
???
for i in range(1,len(obs)):
??????? char = obs[i]
??????? V.append({})
??????? newPath = {}
???????
#check every state it can be
???????
for s in States:
???????????
#assume that in this case and calculate what the possibility is
???????????
emit =? emit_P[s].get(char, MIN_FLOAT) #emit it
???????????
prob_max = MIN_FLOAT
??????????? state_max = PrevStatus[s][
0]
???????????
for preState in PrevStatus[s]:
???????????????
#calculate the previous state
??? ????????????
prob = V[i-1][preState] + trans_P[preState][s] + emit
???????????????
if(prob>prob_max):
??????????????????? prob_max = prob
??????????????????? state_max = preState
??????????? V[i][s] = prob_max
??????????? newPath[s] = path[state_max] + [s]
??????? path = newPath
??? finalProb = MIN_FLOAT
??? finalState =
""
???
for fs in ('E','S'):
??????? p = V[len(obs)-
1][fs]
???????
if(p>finalProb):
??????????? finalProb = p
??????????? finalState = fs
???
return (finalProb,path[finalState])
#judge if the char is a digit or a english char or a punctuation
def isDigitOrEng(char):
???
return char in string.ascii_letters or char in string.digits or char in string.punctuation
#this is to find the indexes of non-Chinese chars of this sentence
def findEngAndDigits(sentence):
??? ind_start = []
??? ind_end = []
???
for i in range(len(sentence)):
???????
if(i==0 and isDigitOrEng(sentence[i])):
??????????? ind_start.append(i)
???????????
if(not isDigitOrEng(sentence[i+1])):
??????????????? ind_end.append(i)
???????
elif(i==len(sentence)-1 and isDigitOrEng(sentence[i])):
??????????? ind_end.append(i)
???????????
if(not isDigitOrEng(sentence[i-1])):
??????????????? ind_start.append(i)
???????
else:
???????????
if(isDigitOrEng(sentence[i]) and (not isDigitOrEng(sentence[i-1]))):
??????????????? ind_start.append(i)
???????????
if(isDigitOrEng(sentence[i]) and (not isDigitOrEng(sentence[i+1]))):
??????????????? ind_end.append(i)
???
return ind_start,ind_end

(5)对于词组进行切分的主函数

#对于词组进行切分
def segmentWord(oriSentence,useRules=True):
???
#用规则进行处理?????????????????????????????????????????????????????????????
???
sentence = preprocess(oriSentence)
???
if(not isInitialized):
??????? initialize()

#构造无向图
??? DAG = getDAG(sentence)
??? route = {}
???
#动态规划查找最大概率路径,计算每个开始字符的最可能路线
???
calculateRoute(DAG,route,sentence)
??? words = []
??? cur =
0
???
buf = ""
???
N = len(sentence)
???
#cur is the current curse of state
??? #cur
是当前状态的几率
???
while(cur<N):
??????? next_cur = route[cur][
1]
??????? word = sentence[cur:next_cur+
1]
??????? #如果单词只是一个字符,那么它可能是未登录的单词
???????
#buf 是临时部分。
???????
if(len(word)==1):
??????????? buf+=word
???????
else:
???????????
#until we have next word which is not single.
???????????
if(len(buf)!=0):
???????????????
#we have buf
??????????????? #if this word is in dictionary, usually not
??????????????? #or if it is a single word
???????????????
if(buf in Possibility or len(buf)==1):
??????????????????? words.append(buf)
???????????????
else:
???????????????
#if not , it is an un-login word.
??????????????? #we must use HMM to cut them
??????????????? #if not
,它是一个未登录词。
#我们必须使用 HMM 来切割它们,采用的HMM模型了,中文词汇按照BEMS四个状态来标记.
#
在这个函数中,就是使用HMM的方法,对这些未识别成功的词进行标注
???????????????????
words += HMM.cutUnrecognized(buf)
???????????????
#clear the buf
???????????????
buf=""
???????????
words.append(word)
??????? cur = next_cur+
1
???
if(buf):
??????? words += HMM.cutUnrecognized(buf)
???
return words

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-04-07 22:41:41  更:2022-04-07 22:46:03 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/13 16:58:23-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码