IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 【快速理解张量】通过torch.rand和举例通俗解释张量tensor -> 正文阅读

[人工智能]【快速理解张量】通过torch.rand和举例通俗解释张量tensor

问题描述:

深度学习的核心就是卷积,而卷积的核心那就是张量。

那么如何理解张量(tensor)就成了深度学习路途中不可缺少的一步,讲真的,刚学习深度学习那会儿张量实在是困惑了自己很长一段时间,而这篇文章根据自己学习深度学习的历程给出了一个清晰通俗的解释,相比于官方教材给出了更容易让初学者更能理解的逻辑举例。

如果你的张量理解程度还停留在只能想象出三维的张量维度的话,相信这篇文章一定能让你彻底理解各种维度的张量!

理解第一步:

对张量最初级的理解可以举例为python中的列表,这里的list就可以理解为一维张量

list=[1,2,3,4,5]

我们也可以通过常见的张量生成函数torch.rand()来生成一位张量(torch.rand的作用通俗来说就是产生均匀分布的数据!

torch.rand()里面有几个数字那么就是生成几维张量!

例如这里生成一维张量:

import torch

#生成一个有四个随机张量元素的一维张量
x = torch.rand(4)

print(x)

生成结果:
在这里插入图片描述
好了,到这你就完成了理解张量的第一步了!

矩阵,这是理解张量的第一步,


理解第二步(二维张量):

理解张量的第二步也不难,其实就可以理解为我们大学课程中学习的矩阵!
例如这个两行两列的矩阵B就可以看作一个二维张量:
在这里插入图片描述
同样我们用torch.rand()生成一个二维张量,再次强调,torch.rand()括号里面输入几个数那就是生成几维张量,这里我们输入两个数:

import torch

#生成二维张量
x = torch.rand(2,4)

print(x)

生成了个两行四列的张量(矩阵):
在这里插入图片描述
二维张量常见于灰度图像当中,灰度图像即为一个二维张量数据!


理解第三步(三维张量):

理解三维张量也相对容易,二维张量可以看作一个平面,而三维张量就可以看作很多个二维张量平面两两平行摆放。

例如我们常见的RGB图像就可以理解为3个二维灰度图像并排摆放。
在这里插入图片描述

同样,我们用torch.rand()生成三维张量:

import torch

#rand括号里输入几个数就是生成几维张量
#这里的(2,3,4)分别为(channel,height,width)
x = torch.rand(2,3,4)

print(x)

张量结果:
在这里插入图片描述
这里通俗理解为,生成了2个平行摆放的3行4列的二维张量!


理解第四步(高维张量):

相信大多数人的想象力就到上面为止了,我们的张量其实不但有3维,还有33维、333维、333333维。。。

在理解高维张量之前,我先想到了俄罗斯套娃,哈哈……:
在这里插入图片描述

其实高维张量就可以理解为俄罗斯套娃,单位为“套”
一“套”张量 = 一维张量
n’‘套’'张量 = n维张量

其实张量有专属的高维张量单位,那就是batch,相信跑过深度的同学都知道,训练网络之前都得调batchsize大小,其实本质上就是调的张量维度,维度高了计算机也会吃不消,毕竟理论上可以将batchsize调成9999999哈哈。

同样我们可以通过torch.rand()生成高维张量:

import torch

'''这里的rand()括号里面的参数从第四维开始其实就是不断加入一个新的参数---batch!
	例如我这里4维张量就是(batch,channel,heigth,width)
	那如果是6维张量那就是(batch,batch,batch,channel,heigth,width)
	不断地在前面加batch就好啦!'''
x = torch.rand(2,3,4,5)

print(x)

输出结果:
在这里插入图片描述
用我们俄罗斯套娃的话术将就是:我们生成了个2套3层4行5列的四维张量

当然我们还可以生成5套6套7套8套9层10行11列的张量哈哈,即:torch.rand(5,6,7,8,9,10,11)


当然,我们还可以通过简图通俗理解以及想象高维张量长啥样!

例如:
三维张量为一套(1个batch),那么四维张量很简单就是把三维张量排成一列摆放:
在这里插入图片描述
好啦,三套张量排排放!这就是我们的四维张量啦!

那五维张量长啥样呢?我们来看看:
在这里插入图片描述
这就是五维张量啦,也就是3套四维张量并排放!

其实在这我们就可以看到张量的升维其实也是在降维
怎么理解呢,其实不知道大家有没发现上面2张图的过程很像我们第三步的那张图,我们的三维张量在上图五维张量中就可以看作为当初最基础的单位:那个小方格。

同样如果是六维张量就是把五维张量这个“平面”平行叠多层即是升维。

其实batch不断地充当最初的那个小方格了,只不过是大套包小套,小套变小格!(bigger batch includes smaller batch, and smaller batch changes into little grid )

诶,人生无常,大肠包小肠,不知道你是否从这通俗的解释中彻底明白了张量tensor呢哈哈……

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-04-09 18:22:35  更:2022-04-09 18:22:45 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/26 11:55:22-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码