IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 行人跟踪之身份识别(er) -> 正文阅读

[人工智能]行人跟踪之身份识别(er)

er 不是二 我故意的!别讲我二。留言二的那个,你别跑!

人脸识别demo完成,搞一搞yolov5+deepsort

环境还是上个环境,装了就没问题

直接上百度盘链接

链接:https://pan.baidu.com/s/16q3wOgZ4zGqkEkAzVmk2Mw?
提取码:yolo?
代码,模型,数据都有,下载下来直接run? mian.py就行

import numpy as np

import tracker
from detector import Detector
import cv2

if __name__ == '__main__':

    # 根据视频尺寸,填充一个polygon,供撞线计算使用
    mask_image_temp = np.zeros((1080, 1920), dtype=np.uint8)

    # 初始化2个撞线polygon
    list_pts_blue = [[204, 305], [227, 431], [605, 522], [1101, 464], [1900, 601], [1902, 495], [1125, 379], [604, 437],
                     [299, 375], [267, 289]]
    ndarray_pts_blue = np.array(list_pts_blue, np.int32)
    polygon_blue_value_1 = cv2.fillPoly(mask_image_temp, [ndarray_pts_blue], color=1)
    polygon_blue_value_1 = polygon_blue_value_1[:, :, np.newaxis]

    # 填充第二个polygon
    mask_image_temp = np.zeros((1080, 1920), dtype=np.uint8)
    list_pts_yellow = [[181, 305], [207, 442], [603, 544], [1107, 485], [1898, 625], [1893, 701], [1101, 568],
                       [594, 637], [118, 483], [109, 303]]
    ndarray_pts_yellow = np.array(list_pts_yellow, np.int32)
    polygon_yellow_value_2 = cv2.fillPoly(mask_image_temp, [ndarray_pts_yellow], color=2)
    polygon_yellow_value_2 = polygon_yellow_value_2[:, :, np.newaxis]

    # 撞线检测用mask,包含2个polygon,(值范围 0、1、2),供撞线计算使用
    polygon_mask_blue_and_yellow = polygon_blue_value_1 + polygon_yellow_value_2

    # 缩小尺寸,1920x1080->960x540
    polygon_mask_blue_and_yellow = cv2.resize(polygon_mask_blue_and_yellow, (960, 540))

    # 蓝 色盘 b,g,r
    blue_color_plate = [255, 0, 0]
    # 蓝 polygon图片
    blue_image = np.array(polygon_blue_value_1 * blue_color_plate, np.uint8)

    # 黄 色盘
    yellow_color_plate = [0, 255, 255]
    # 黄 polygon图片
    yellow_image = np.array(polygon_yellow_value_2 * yellow_color_plate, np.uint8)

    # 彩色图片(值范围 0-255)
    color_polygons_image = blue_image + yellow_image
    # 缩小尺寸,1920x1080->960x540
    color_polygons_image = cv2.resize(color_polygons_image, (960, 540))

    # list 与蓝色polygon重叠
    list_overlapping_blue_polygon = []

    # list 与黄色polygon重叠
    list_overlapping_yellow_polygon = []

    # 进入数量
    down_count = 0
    # 离开数量
    up_count = 0

    font_draw_number = cv2.FONT_HERSHEY_SIMPLEX
    draw_text_postion = (int(960 * 0.01), int(540 * 0.05))

    # 初始化 yolov5
    detector = Detector()

    # 打开视频
    capture = cv2.VideoCapture('./video/test.mp4')
    # capture = cv2.VideoCapture('/mnt/datasets/datasets/towncentre/TownCentreXVID.avi')

    while True:
        # 读取每帧图片
        _, im = capture.read()
        if im is None:
            break

        # 缩小尺寸,1920x1080->960x540
        im = cv2.resize(im, (960, 540))

        list_bboxs = []
        bboxes = detector.detect(im)

        # 如果画面中 有bbox
        if len(bboxes) > 0:
            list_bboxs = tracker.update(bboxes, im)

            # 画框
            # 撞线检测点,(x1,y1),y方向偏移比例 0.0~1.0
            output_image_frame = tracker.draw_bboxes(im, list_bboxs, line_thickness=None)
            pass
        else:
            # 如果画面中 没有bbox
            output_image_frame = im
        pass

        # 输出图片
        output_image_frame = cv2.add(output_image_frame, color_polygons_image)

        if len(list_bboxs) > 0:
            # ----------------------判断撞线----------------------
            for item_bbox in list_bboxs:
                x1, y1, x2, y2, label, track_id = item_bbox

                # 撞线检测点,(x1,y1),y方向偏移比例 0.0~1.0
                y1_offset = int(y1 + ((y2 - y1) * 0.6))

                # 撞线的点
                y = y1_offset
                x = x1

                if polygon_mask_blue_and_yellow[y, x] == 1:
                    # 如果撞 蓝polygon
                    if track_id not in list_overlapping_blue_polygon:
                        list_overlapping_blue_polygon.append(track_id)
                    pass

                    # 判断 黄polygon list 里是否有此 track_id
                    # 有此 track_id,则 认为是 外出方向
                    if track_id in list_overlapping_yellow_polygon:
                        # 外出+1
                        up_count += 1

                        print(f'类别: {label} | id: {track_id} | 上行撞线 | 上行撞线总数: {up_count} | 上行id列表: {list_overlapping_yellow_polygon}')

                        # 删除 黄polygon list 中的此id
                        list_overlapping_yellow_polygon.remove(track_id)

                        pass
                    else:
                        # 无此 track_id,不做其他操作
                        pass

                elif polygon_mask_blue_and_yellow[y, x] == 2:
                    # 如果撞 黄polygon
                    if track_id not in list_overlapping_yellow_polygon:
                        list_overlapping_yellow_polygon.append(track_id)
                    pass

                    # 判断 蓝polygon list 里是否有此 track_id
                    # 有此 track_id,则 认为是 进入方向
                    if track_id in list_overlapping_blue_polygon:
                        # 进入+1
                        down_count += 1

                        print(f'类别: {label} | id: {track_id} | 下行撞线 | 下行撞线总数: {down_count} | 下行id列表: {list_overlapping_blue_polygon}')

                        # 删除 蓝polygon list 中的此id
                        list_overlapping_blue_polygon.remove(track_id)

                        pass
                    else:
                        # 无此 track_id,不做其他操作
                        pass
                    pass
                else:
                    pass
                pass

            pass

            # ----------------------清除无用id----------------------
            list_overlapping_all = list_overlapping_yellow_polygon + list_overlapping_blue_polygon
            for id1 in list_overlapping_all:
                is_found = False
                for _, _, _, _, _, bbox_id in list_bboxs:
                    if bbox_id == id1:
                        is_found = True
                        break
                    pass
                pass

                if not is_found:
                    # 如果没找到,删除id
                    if id1 in list_overlapping_yellow_polygon:
                        list_overlapping_yellow_polygon.remove(id1)
                    pass
                    if id1 in list_overlapping_blue_polygon:
                        list_overlapping_blue_polygon.remove(id1)
                    pass
                pass
            list_overlapping_all.clear()
            pass

            # 清空list
            list_bboxs.clear()

            pass
        else:
            # 如果图像中没有任何的bbox,则清空list
            list_overlapping_blue_polygon.clear()
            list_overlapping_yellow_polygon.clear()
            pass
        pass

        text_draw = 'DOWN: ' + str(down_count) + \
                    ' , UP: ' + str(up_count)
        output_image_frame = cv2.putText(img=output_image_frame, text=text_draw,
                                         org=draw_text_postion,
                                         fontFace=font_draw_number,
                                         fontScale=1, color=(255, 255, 255), thickness=2)

        cv2.imshow('demo', output_image_frame)
        cv2.waitKey(1)

        pass
    pass

    capture.release()
    cv2.destroyAllWindows()

撞线对我目前来说没什么大用,但是考虑到后面可以做个电子围栏还是可以留下的。

detect.py

import torch
import numpy as np

from models.experimental import attempt_load
from utils.datasets import letterbox
from utils.general import non_max_suppression, scale_coords
from utils.torch_utils import select_device


class Detector:

    def __init__(self):
        self.img_size = 640
        self.threshold = 0.3
        self.stride = 1

        self.weights = './weights/yolov5m.pt'

        self.device = '0' if torch.cuda.is_available() else 'cpu'
        self.device = select_device(self.device)
        model = attempt_load(self.weights, map_location=self.device)
        model.to(self.device).eval()
        model.half()

        self.m = model
        self.names = model.module.names if hasattr(
            model, 'module') else model.names

    def preprocess(self, img):

        img0 = img.copy()
        img = letterbox(img, new_shape=self.img_size)[0]
        img = img[:, :, ::-1].transpose(2, 0, 1)
        img = np.ascontiguousarray(img)
        img = torch.from_numpy(img).to(self.device)
        img = img.half()
        img /= 255.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        return img0, img

    def detect(self, im):

        im0, img = self.preprocess(im)

        pred = self.m(img, augment=False)[0]
        pred = pred.float()
        pred = non_max_suppression(pred, self.threshold, 0.4)

        boxes = []
        for det in pred:

            if det is not None and len(det):
                det[:, :4] = scale_coords(
                    img.shape[2:], det[:, :4], im0.shape).round()

                for *x, conf, cls_id in det:
                    lbl = self.names[int(cls_id)]
                    if lbl not in ['person', 'bicycle', 'car', 'motorcycle', 'bus', 'truck']:
                        continue
                    pass
                    x1, y1 = int(x[0]), int(x[1])
                    x2, y2 = int(x[2]), int(x[3])
                    boxes.append(
                        (x1, y1, x2, y2, lbl, conf))

        return boxes

if lbl not in ['person', 'bicycle', 'car', 'motorcycle', 'bus', 'truck'] 我只需要检测人就行 留个person其余全删。

准备工作到此结束。后面就开始结合人脸识别

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-04-09 18:22:35  更:2022-04-09 18:23:20 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/26 10:18:41-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码