模板匹配
1.模板匹配
模板匹配:在给定的模板中查找最相似的区域 实现流程:
- 准备两幅图像
(1)原图 (2)模板图 - 滑动模板块和原图像进行比对
- 对于每个像素位置。将计算结果存在矩阵中,输入图像大小(WH),模板图像大小(wh),则输出矩阵的大小为(W-w+1,H-h+1)
- 查找最大值所在位置——最匹配的
2.实现
OpenCV中的方法实现模板匹配。 API:
res = cv.matchTemplate(img, template,method)
参数:
- img:要进行模板匹配的图像
- Template:模板
- method:实现模板匹配的算法,主要有:
(1)平方差匹配(CV_TM_SQDIFF):利用模板与图像之间的平方差进行匹配,最好的匹配是O,匹配越差,匹配的值越大。 (2)相关匹配(CV_TM_CCORR):利用模板与图像间的乘法进行匹配,数值越大表示匹配程度较高,越小表示匹配效果差。 (3)利用相关系数匹配(CV_TM_CCOEFF):利用模板与图像间的相关系数匹配,1表示完美的匹配,-1表示最差的匹配。 完成匹配后,使用cv.minMaxLoc0方法查找最大值所在的位置即可。如果使用平方差作为比较方法,则最小值位置是最佳匹配位置。
3.示例:
(1)原图: (2)模板图: (3)代码如下:
import cv2 as cv
import matplotlib.pyplot as plt
# 解决中文显示问题
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus'] = False
# 1图像和模板读取
img = cv.imread('images/wulin.jpg')
template = cv.imread('images/wulinmoban.jpg')
# 2模板匹配
# 2.1模板匹配
res = cv.matchTemplate(img, template, cv.TM_CCORR)
# 2.2返回图像中最匹配的位置,确定左上角的坐标,并将匹配位置绘制在图像上
min_val, max_val, min_loc, max_loc = cv.minMaxLoc(res)
# 使用平方差时最小值为最佳匹配位置
# top_left = min_loc
top_left = max_loc
h, w = template.shape[:2]
bottom_right = (top_left[0] + w, top_left[1] + h)
cv.rectangle(img, top_left, bottom_right, (0, 255, 0), 2)
# 3图像显示
plt.imshow(img[:, :, ::-1])
plt.title('匹配结果'),plt.xticks([]),plt.yticks([])
plt.show()
(4)运行结果:
|