半监督学习是模式识别和机器学习领域研究的重点问题,是监督学习与无监督学习相结合的一种学习方法。半监督学习使用大量的未标记数据,以及同时使用标记数据,来进行模式识别工作。
以下文章供大家参考: 1.Virtual Adversarial Training: a Regularization Method for Supervised and Semi-supervised Learning. 下载PDF:https://www.aminer.cn/pub/599c7965601a182cd2638d24/?f=cs
2.Towards Automated Semi-Supervised Learning 下载PDF:https://www.aminer.cn/pub/5ce2d0b9ced107d4c63ae2c9/?f=cs
3.Improving Landmark Localization with Semi-Supervised Learning. 下载PDF:https://www.aminer.cn/pub/5a260c8b17c44a4ba8a32ab5/?f=cs
4.Semi-Supervised Deep Learning With Memory 下载PDF:https://www.aminer.cn/pub/5bdc315017c44a1f58a05e75/?f=cs
5.Adversarial Dropout for Supervised and Semi-supervised Learning. 下载PDF:https://www.aminer.cn/pub/5c8b9b6a4895d9cbc69ced36/?f=cs
6.Semi-Supervised Learning via Compact Latent Space Clustering. 下载PDF:https://www.aminer.cn/pub/5c8e29404
|