IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> torchAudio中wav2vec2的源码(三)——transformer-encoder的构建 -> 正文阅读

[人工智能]torchAudio中wav2vec2的源码(三)——transformer-encoder的构建

前文再续,书接上一回。接下来我们看看wav2vec2怎么构建transformer-encoder。
请添加图片描述

在我们的wav2vec_model方法中,提取特征模型建立后就开始建立transformer的encoder模型

请添加图片描述

我们跳进去compoents._get_encoder方法中看看。

encoder

直接看代码:

def _get_encoder(
    in_features: int,
    embed_dim: int,
    dropout_input: float,
    pos_conv_kernel: int,
    pos_conv_groups: int,
    num_layers: int,
    num_heads: int,
    attention_dropout: float,
    ff_interm_features: int,
    ff_interm_dropout: float,
    dropout: float,
    layer_norm_first: bool,
    layer_drop: float,
) -> Encoder:
    # 特征映射
    feature_projection = FeatureProjection(in_features, embed_dim, dropout_input)
    # 特征位置embedding
    pos_conv = ConvolutionalPositionalEmbedding(embed_dim, pos_conv_kernel, pos_conv_groups)
    # 建立空模型列表
    encoder_layers = nn.ModuleList()
    for _ in range(num_layers):
        # 多头自监督
        attention = SelfAttention(
            embed_dim=embed_dim,
            num_heads=num_heads,
            dropout=attention_dropout,
        )
        # 前馈网络
        feed_forward = FeedForward(
            io_features=embed_dim,
            intermediate_features=ff_interm_features,
            intermediate_dropout=ff_interm_dropout,
            output_dropout=dropout,
        )
        # encoder结构
        encoder_layers.append(
            EncoderLayer(
                attention=attention,
                dropout=dropout,
                layer_norm_first=layer_norm_first,
                feed_forward=feed_forward,
            )
        )
    # 位置embedding、dropout、encoder层、
    transformer = Transformer(
        pos_conv_embed=pos_conv,
        dropout=dropout,
        layers=encoder_layers,
        layer_norm_first=not layer_norm_first,
        layer_drop=layer_drop,
    )
    return Encoder(feature_projection, transformer)

主要工作:

  1. 特征映射feature_projection
  2. 特征位置embedding,主要为了记录位置
  3. transformer的encoder结构的搭建
  4. 返回encoder模型

现在我们一个一个看里面的代码结构。

特征映射

feature_projection = FeatureProjection(in_features, embed_dim, dropout_input)

in_features的值是特征提取时最后的output_channel的大小。

in_features=512

out_feature=embed_dim=768

dropout_input=0.1

特征映射用到了FeatureProjection对象,我们点进去看看结构是怎么样的。

里面代码结构如下:

# 特征映射
class FeatureProjection(Module):
    # 建立线性投影模型
    # 输入、输出、dropout
    def __init__(
        self,
        in_features: int,
        out_features: int,
        dropout: float,
    ):
        super().__init__()
        # 层归一化
        self.layer_norm = nn.LayerNorm(in_features)
        # 线性转换
        self.projection = nn.Linear(
            in_features,
            out_features,
        )
        # dropout
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        """
        Args:
            x (Tensor):
                Feature Tensor. shape: ``[batch, frame, in_feature]``
        Returns:
            Tensor: Projected features. ``[batch, frame, out_feature]``.
        """
        # 先归一、再投影、再dropout
        x = self.layer_norm(x)
        x = self.projection(x)
        x = self.dropout(x)
        return x

好像没什么好说的…,直接下一个。

特征位置embedding

 pos_conv = ConvolutionalPositionalEmbedding(embed_dim, pos_conv_kernel, pos_conv_groups)

embed_dim=768

pos_conv_kernel=128

pos_conv_groups=16

具体代码如下:

class ConvolutionalPositionalEmbedding(Module):
    """Positional embedding which is placed at the beginning of Transformer.
    Args:
        embed_dim (int): Feature dimension of the input Tensor.
        kernel_size (int): The number of frames to be use.
        groups (int): The number of groups in feature dimensions.
    """
    # embed维度、核函数大小、卷积位置嵌入的组数。
    def __init__(
        self,
        embed_dim: int,
        kernel_size: int,
        groups: int,
    ):
        super().__init__()

        self.embed_dim = embed_dim
        # conv1d
        self.conv = nn.Conv1d(
            in_channels=embed_dim,
            out_channels=embed_dim,
            kernel_size=kernel_size,
            padding=kernel_size // 2,
            groups=groups,
        )
        # 权重标准化
        self.conv = nn.utils.weight_norm(self.conv, name="weight", dim=2)
        self.num_remove: int = 1 if kernel_size % 2 == 0 else 0

    def __prepare_scriptable__(self):
        for hook in self.conv._forward_pre_hooks.values():
            # The hook we want to remove is an instance of WeightNorm class, so
            # normally we would do `if isinstance(...)` but this class is not accessible
            # because of shadowing, so we check the module name directly.
            # 
            if hook.__module__ == "torch.nn.utils.weight_norm" and hook.__class__.__name__ == "WeightNorm":
                _LG.warning("Removing weight_norm from %s", self.__class__.__name__)
                torch.nn.utils.remove_weight_norm(self.conv)
        return self

    def forward(self, x):
        """
        Args:
            x (Tensor): shape ``[batch, frame, feature]``.

        Returns:
            Tensor: The resulting feature. Shape ``[batch, frame, feature]``.
        """
        x = x.transpose(-2, -1)
        x = self.conv(x)
        if self.num_remove > 0:
            x = x[..., : -self.num_remove]
        x = torch.nn.functional.gelu(x)
        x = x.transpose(-2, -1)
        return x

处对象初始化方法中可以看出,位置embedding也是用conv1d进行获得的。

然后权重标准化的目的是防止过拟合(不过我也不太懂)

SelfAttention

接下来看看selfAttention的源代码。

先看看传入的参数:

attention = SelfAttention(
            embed_dim=embed_dim,
            num_heads=num_heads,
            dropout=attention_dropout,
        )

embed_dim=768,代表输出的特征维度为768

num_heads=12,代表12头注意力机制

attention_dropout=0.1

然后点进SelfAttention对象中看看结构(把解释都写下面了):

class SelfAttention(Module):

    def __init__(
        self,
        embed_dim: int,
        num_heads: int,
        dropout: float = 0.0,
    ):
        super().__init__()
        # 求每个注意力头的维度是多少
        head_dim = embed_dim // num_heads
        # 如果整除有余数,那代表模型结构不行
        if head_dim * num_heads != embed_dim:
            raise ValueError(f"`embed_dim ({embed_dim})` is not divisible by `num_heads ({num_heads})`")

        self.embed_dim = embed_dim
        self.num_heads = num_heads
        self.dropout = torch.nn.Dropout(dropout)
        self.head_dim = head_dim

        # sqrt(dk)
        self.scaling = self.head_dim ** -0.5
        #得到k、v、q的模型
        self.k_proj = nn.Linear(embed_dim, embed_dim, bias=True)
        self.v_proj = nn.Linear(embed_dim, embed_dim, bias=True)
        self.q_proj = nn.Linear(embed_dim, embed_dim, bias=True)
        self.out_proj = nn.Linear(embed_dim, embed_dim, bias=True)

    def forward(
        self,
        x: Tensor,
        attention_mask: Optional[Tensor] = None,
    ) -> Tensor:
        # x的维度不等于3或者第三个维度不等于768的话,就寄
        if x.ndim != 3 or x.shape[2] != self.embed_dim:
            raise ValueError(
                f"The expected input shape is (batch, sequence, embed_dim=={self.embed_dim}). " f"Found {x.shape}."
            )
        # 获取x的三个维度的大小
        batch_size, length, embed_dim = x.size()
        # 检测遮蔽参数是否正确
        if attention_mask is not None:
            # 设置遮蔽参数
            shape_ = (batch_size, 1, length, length)

            if attention_mask.size() != shape_:
                raise ValueError(f"The expected attention mask shape is {shape_}. " f"Found {attention_mask.size()}.")
        # q、k、v的形状
        shape = (batch_size, length, self.num_heads, self.head_dim)
        # 把q变成shape的形状后再进行转换
        q = self.q_proj(x).view(*shape).transpose(2, 1)  # B, nH, L, Hd
        # k的转置
        k = self.k_proj(x).view(*shape).permute(0, 2, 3, 1)  # B, nH, Hd, L
        v = self.v_proj(x).view(*shape).transpose(2, 1)  # B, nH, L, Hd
        #softmax中的计算公式
        weights = self.scaling * (q @ k)  # B, nH, L, L
        # 如果attention_mask是有的,就在上式加上
        if attention_mask is not None:
            weights += attention_mask
        # 做个softmax
        weights = torch.nn.functional.softmax(weights, dim=-1)
        # 做个dropout
        weights = self.dropout(weights)
        # 和v做点积
        output = weights @ v  # B, nH, L, Hd
        # 输出
        output = output.transpose(2, 1).reshape(batch_size, length, embed_dim)

        output = self.out_proj(output)
        return output

FeedForward

接下来我们看feed_forward的模型获取。

feed_forward = FeedForward(
            io_features=embed_dim,
            intermediate_features=ff_interm_features,
            intermediate_dropout=ff_interm_dropout,
            output_dropout=dropout,
        )

FeedForward对象传入的参数有如下几个参数:(名字写得花里胡哨的,还是不是传特征个数)

io_features=embed_dim=768

intermediate_features=ff_interm_features=3072

intermediate_dropout=ff_interm_dropout=0.0

output_dropout=dropout=0.1

看看FeedForward对象的代码如何:

class FeedForward(Module):
    """Layer that follows attention layer in encoder layer."""

    def __init__(
        self,
        io_features: int,
        intermediate_features: int,
        intermediate_dropout: float,
        output_dropout: float,
    ):
        super().__init__()
        # 768 -> 3072
        self.intermediate_dense = nn.Linear(io_features, intermediate_features)
        self.intermediate_dropout = nn.Dropout(intermediate_dropout)
        # 3072 -> 768
        self.output_dense = nn.Linear(intermediate_features, io_features)
        self.output_dropout = nn.Dropout(output_dropout)

    def forward(self, x):
        """
        Args:
            x (Tensor): shape: `(batch, sequence_length, io_features)`
        Returns:
            x (Tensor): shape: `(batch, sequence_length, io_features)`
        """
        x = self.intermediate_dense(x)
        x = torch.nn.functional.gelu(x)
        x = self.intermediate_dropout(x)
        x = self.output_dense(x)
        x = self.output_dropout(x)
        return x

哇,简单多了,就两个线性网络层,中间夹了个gelu。

EncoderLayer

现在看第三部分,encoder_layers的构建。

encoder_layers.append(
            EncoderLayer(
                attention=attention,
                dropout=dropout,
                layer_norm_first=layer_norm_first,
                feed_forward=feed_forward,
            )
        )

encoder_layers是一个nn.ModuleList()对象。所以往里面加入的,就是我们的encoder模型。

我们看看EncoderLayer对象是什么。

首先看看传入的参数有如下参数:

attention=attention,就是传入多头模型

dropout=dropout=0.1

layer_norm_first=layer_norm_first=false

feed_forward=feed_forward,传入全连接层

看看源代码:

class EncoderLayer(Module):
    """A layer unit in encoder. Combines multihead self attention and feed forward."""

    def __init__(
        self,
        attention: Module,
        dropout: float,
        layer_norm_first: bool,
        feed_forward: Module,
    ):
        super().__init__()
        self.attention = attention
        self.dropout = nn.Dropout(dropout)
        self.layer_norm = nn.LayerNorm(attention.embed_dim)
        self.layer_norm_first = layer_norm_first
        self.feed_forward = feed_forward
        self.final_layer_norm = nn.LayerNorm(attention.embed_dim)

    def forward(
        self,
        x: Tensor,
        attention_mask: Optional[Tensor] = None,
    ):
        """
        Args:
            x (Tensor): shape: `(batch, sequence_length, embed_dim)`
            attention_mask (Tensor or None, optional):
                shape: `(batch, 1, sequence_length, sequence_length)`
        """
        residual = x
        # 是否先正则
        if self.layer_norm_first:
            x = self.layer_norm(x)
        # 多头注意力
        x = self.attention(x, attention_mask)
        x = self.dropout(x)
        # resnet机制
        x = residual + x
        # 是否先正则
        if self.layer_norm_first:
            x = x + self.feed_forward(self.final_layer_norm(x))
        else:
            x = self.layer_norm(x)
            x = self.final_layer_norm(x + self.feed_forward(x))
        return x

Transformer

把encoder结构搞完了,接下来看看transformer对象的结构如何。

先看参数:

transformer = Transformer(
        pos_conv_embed=pos_conv,
        dropout=dropout,
        layers=encoder_layers,
        layer_norm_first=not layer_norm_first,
        layer_drop=layer_drop,
    )

pos_conv_embed=pos_conv,传入位置embedding结构

dropout=dropout=0.1

layers=encoder_layers,传入encoder层数

layer_norm_first=not layer_norm_first=true

layer_drop=layer_drop=0.05

再看看transformer代码结构如何:

class Transformer(Module):
    def __init__(
        self,
        pos_conv_embed: Module,
        dropout: float,
        layers: Module,
        layer_norm_first: bool,
        layer_drop: float,
    ):
        super().__init__()
        self.pos_conv_embed = pos_conv_embed
        self.layer_norm = nn.LayerNorm(pos_conv_embed.embed_dim)
        self.layer_norm_first = layer_norm_first
        self.layer_drop = layer_drop
        self.dropout = nn.Dropout(dropout)
        self.layers = layers

    def _preprocess(self, x: Tensor):
        # 位置设置
        x = x + self.pos_conv_embed(x)
        # 是否归一
        if self.layer_norm_first:
            x = self.layer_norm(x)

        x = self.dropout(x)
        return x

    def forward(
        self,
        x: Tensor,
        attention_mask: Optional[Tensor] = None,
    ):
        # 位置设置
        x = self._preprocess(x)
        # 循环encoder层数,跑encdoer
        for layer in self.layers:
            if not (self.training and torch.rand(1).item() <= self.layer_drop):
                x = layer(x, attention_mask)
        # 归一
        if not self.layer_norm_first:
            x = self.layer_norm(x)

        return x

    def get_intermediate_outputs(
        self,
        x: Tensor,
        attention_mask: Optional[Tensor] = None,
        num_layers: Optional[int] = None,
    ) -> List[Tensor]:
        if num_layers is not None:
            if not 0 < num_layers <= len(self.layers):
                raise ValueError(f"`num_layers` must be between [1, {len(self.layers)}]")

        ret: List[Tensor] = []
        x = self._preprocess(x)
        for layer in self.layers:
            x = layer(x, attention_mask)
            ret.append(x)
            if num_layers is not None and len(ret) >= num_layers:
                return ret
        return ret

主要工作:简单来说就是把embedding结构和encoder多层结构给整合了

Encoder

最后看一个Encoder类,看看传入的参数。

Encoder(feature_projection, transformer)

feature_projection和transformer都是上面建立过的module。

Encoder代码:

class Encoder(Module):
    def __init__(
        self,
        feature_projection: Module,
        transformer: Module,
    ):
        super().__init__()
        self.feature_projection = feature_projection
        self.transformer = transformer

    # 为特征加mask
    def _preprocess(
        self,
        features: Tensor,
        lengths: Optional[Tensor] = None,
    ) -> Tuple[Tensor, Optional[Tensor]]:
        # 特征映射
        x = self.feature_projection(features)
        # mask
        mask: Optional[Tensor] = None

        if lengths is not None:
            # 数据个数、最大长度
            batch_size, max_len, _ = x.shape
            # create mask for padded elements and zero-out them
            # 为填充元素创建遮罩并将其归零
            mask = torch.arange(max_len, device=lengths.device).expand(batch_size, max_len) >= lengths[:, None]
            x[mask] = 0.0
            # extend the mask to attention shape and set weight
            # 将mask延伸至注意力的大小并设置weight
            mask = -10000.0 * mask[:, None, None, :].to(dtype=features.dtype)
            mask = mask.expand(batch_size, 1, max_len, max_len)
        return x, mask

    def forward(
        self,
        features: Tensor,
        lengths: Optional[Tensor] = None,
    ) -> Tensor:
        x, mask = self._preprocess(features, lengths)
        x = self.transformer(x, attention_mask=mask)
        return x

    def extract_features(
        self,
        features: Tensor,
        lengths: Optional[Tensor] = None,
        num_layers: Optional[int] = None,
    ) -> List[Tensor]:
        x, masks = self._preprocess(features, lengths)
        return self.transformer.get_intermediate_outputs(x, attention_mask=masks, num_layers=num_layers)

关于mask方面的设定,我表示没怎么看懂。其他都还好。

不过总的来说,也算是了解了整个模型的构造过程了。

总结

因此,整个wav2vec2_model结构如下:

请添加图片描述

蓝色字代表步骤解释,并非代码。其中,全部的对象都是为了构造一整个模型而存在。

近期发现

这个模型是用来直接做asr微调任务的,也就是说不需要进行预训练操作。整个模型预训练过的权重也在下面这个步骤下载了:

请添加图片描述

这导致了,我们看不到预训练的损失函数设置和gamble-softmax和量化过程。

只能直接用这个模型进行微调任务。

这我就不乐意了,虽然看代码的时间学到了不少东西,但强行学不完的感觉也有点憋屈。fairseq的操作也是一样,直接加载pt文件得到模型权重。

我们的wav2vec2.0的微调任务模型就这些。后面还有的就是调用模型过程和ctc解码操作了。有时间会继续看下去的。

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-04-14 23:56:33  更:2022-04-15 00:01:33 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/8 3:47:14-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码