Bert(预训练模型)
动机
- 基于微调的NLP模型
- 预训练的模型抽取了足够多的信息
- 新的任务只需要增加一个简单的输出层
注:bert相当于只有编码器的transformer
基于transformer的改进
- 每个样本是一个句子对
- 加入额外的片段嵌入
- 位置编码可学习
< cls >为分类 < sep >用来分隔句子 有两个句子前一个id为0后一个id为1
BERT选择Transformer编码器作为其双向架构。在Transformer编码器中常见是,位置嵌入被加入到输入序列的每个位置。然而,与原始的Transformer编码器不同,BERT使用可学习的位置嵌入。上图表明BERT输入序列的嵌入是词元嵌入、片段嵌入和位置嵌入的和。
预训练任务1:带掩码的语言模型
1)transformer的编码器是双向的,标准语言模型要求单向
2)在这个预训练任务中,将随机选择15%的词元作为预测的掩蔽词元。要预测一个掩蔽词元而不使用标签作弊,一个简单的方法是总是用一个特殊的“”替换输入序列中的词元。
3)然而,人造特殊词元“”不会出现在微调中。为了避免预训练和微调之间的这种不匹配,如果为预测而屏蔽词元(例如,在“this movie is great”中选择掩蔽和预测“great”),则在输入中将其替换为:
- 80%时间为特殊的““词元(例如,“this movie is great”变为“this movie is”;
- 10%时间为随机词元(例如,“this movie is great”变为“this movie is drink”);
- 10%时间内为不变的标签词元(例如,“this movie is great”变为“this movie is great”)
预训练任务1:下一个句子预测
模型实现
BERT输入序列明确地表示单个文本和文本对。当输入为单个文本时,BERT输入序列是特殊类别词元“”、文本序列的标记、以及特殊分隔词元“”的连结。当输入为文本对时,BERT输入序列是“”、第一个文本序列的标记、“”、第二个文本序列标记、以及“”的连结。
下面的get_tokens_and_segments 将一个句子或两个句子作为输入,然后返回BERT输入序列的标记及其相应的片段索引。
import torch
from torch import nn
from d2l import torch as d2l
def get_tokens_and_segments(tokens_a, tokens_b=None):
"""获取输入序列的词元及其片段索引"""
tokens = ['<cls>'] + tokens_a + ['<sep>']
segments = [0] * (len(tokens_a) + 2)
if tokens_b is not None:
tokens += tokens_b + ['<sep>']
segments += [1] * (len(tokens_b) + 1)
return tokens, segments
BERTEncoder 使用片段嵌入和可学习的位置嵌入:
class BERTEncoder(nn.Module):
"""BERT编码器"""
def __init__(self, vocab_size, num_hiddens, norm_shape, ffn_num_input,
ffn_num_hiddens, num_heads, num_layers, dropout,
max_len=1000, key_size=768, query_size=768, value_size=768,
**kwargs):
super(BERTEncoder, self).__init__(**kwargs)
self.token_embedding = nn.Embedding(vocab_size, num_hiddens)
self.segment_embedding = nn.Embedding(2, num_hiddens)
self.blks = nn.Sequential()
for i in range(num_layers):
self.blks.add_module(f"{i}", d2l.EncoderBlock(
key_size, query_size, value_size, num_hiddens, norm_shape,
ffn_num_input, ffn_num_hiddens, num_heads, dropout, True))
self.pos_embedding = nn.Parameter(torch.randn(1, max_len,
num_hiddens))
def forward(self, tokens, segments, valid_lens):
X = self.token_embedding(tokens) + self.segment_embedding(segments)
X = X + self.pos_embedding.data[:, :X.shape[1], :]
for blk in self.blks:
X = blk(X, valid_lens)
return X
假设词表大小为10000,为了演示BERTEncoder 的前向推断,让我们创建一个实例并初始化它的参数。
vocab_size, num_hiddens, ffn_num_hiddens, num_heads = 10000, 768, 1024, 4
norm_shape, ffn_num_input, num_layers, dropout = [768], 768, 2, 0.2
encoder = BERTEncoder(vocab_size, num_hiddens, norm_shape, ffn_num_input,
ffn_num_hiddens, num_heads, num_layers, dropout)
将tokens 定义为长度为8的2个输入序列,其中每个词元是词表的索引。使用输入tokens 的BERTEncoder 的前向推断返回编码结果,其中每个词元由向量表示,其长度由超参数num_hiddens 定义。
tokens = torch.randint(0, vocab_size, (2, 8))
segments = torch.tensor([[0, 0, 0, 0, 1, 1, 1, 1], [0, 0, 0, 1, 1, 1, 1, 1]])
encoded_X = encoder(tokens, segments, None)
encoded_X.shape
任务1.掩码的语言模型:
我们实现了下面的MaskLM 类来预测BERT预训练的掩蔽语言模型任务中的掩蔽标记。预测使用单隐藏层的多层感知机(self.mlp )。在前向推断中,它需要两个输入:BERTEncoder 的编码结果和用于预测的词元位置。输出是这些位置的预测结果。
class MaskLM(nn.Module):
"""BERT的掩蔽语言模型任务"""
def __init__(self, vocab_size, num_hiddens, num_inputs=768, **kwargs):
super(MaskLM, self).__init__(**kwargs)
self.mlp = nn.Sequential(nn.Linear(num_inputs, num_hiddens),
nn.ReLU(),
nn.LayerNorm(num_hiddens),
nn.Linear(num_hiddens, vocab_size))
def forward(self, X, pred_positions):
num_pred_positions = pred_positions.shape[1]
pred_positions = pred_positions.reshape(-1)
batch_size = X.shape[0]
batch_idx = torch.arange(0, batch_size)
batch_idx = torch.repeat_interleave(batch_idx, num_pred_positions)
masked_X = X[batch_idx, pred_positions]
masked_X = masked_X.reshape((batch_size, num_pred_positions, -1))
mlm_Y_hat = self.mlp(masked_X)
return mlm_Y_hat
mlm = MaskLM(vocab_size, num_hiddens)
mlm_positions = torch.tensor([[1, 5, 2], [6, 1, 5]])
mlm_Y_hat = mlm(encoded_X, mlm_positions)
print(mlm_Y_hat.shape)
mlm_Y = torch.tensor([[7, 8, 9], [10, 20, 30]])
loss = nn.CrossEntropyLoss(reduction='none')
mlm_l = loss(mlm_Y_hat.reshape((-1, vocab_size)), mlm_Y.reshape(-1))
print(mlm_l.shape)
任务2.预测下一句:
下面的NextSentencePred 类使用单隐藏层的多层感知机来预测第二个句子是否是BERT输入序列中第一个句子的下一个句子。由于Transformer编码器中的自注意力,特殊词元“”的BERT表示已经对输入的两个句子进行了编码。因此,多层感知机分类器的输出层(self.output )以X 作为输入,其中X 是多层感知机隐藏层的输出,而MLP隐藏层的输入是编码后的“”词元。
class NextSentencePred(nn.Module):
"""BERT的下一句预测任务"""
def __init__(self, num_inputs, **kwargs):
super(NextSentencePred, self).__init__(**kwargs)
self.output = nn.Linear(num_inputs, 2)
def forward(self, X):
return self.output(X)
将上述功能进行综合:
class BERTModel(nn.Module):
"""BERT模型"""
def __init__(self, vocab_size, num_hiddens, norm_shape, ffn_num_input,
ffn_num_hiddens, num_heads, num_layers, dropout,
max_len=1000, key_size=768, query_size=768, value_size=768,
hid_in_features=768, mlm_in_features=768,
nsp_in_features=768):
super(BERTModel, self).__init__()
self.encoder = BERTEncoder(vocab_size, num_hiddens, norm_shape,
ffn_num_input, ffn_num_hiddens, num_heads, num_layers,
dropout, max_len=max_len, key_size=key_size,
query_size=query_size, value_size=value_size)
self.hidden = nn.Sequential(nn.Linear(hid_in_features, num_hiddens),
nn.Tanh())
self.mlm = MaskLM(vocab_size, num_hiddens, mlm_in_features)
self.nsp = NextSentencePred(nsp_in_features)
def forward(self, tokens, segments, valid_lens=None,
pred_positions=None):
encoded_X = self.encoder(tokens, segments, valid_lens)
if pred_positions is not None:
mlm_Y_hat = self.mlm(encoded_X, pred_positions)
else:
mlm_Y_hat = None
nsp_Y_hat = self.nsp(self.hidden(encoded_X[:, 0, :]))
return encoded_X, mlm_Y_hat, nsp_Y_hat
|