IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> Transformer BEV perception -> 正文阅读

[人工智能]Transformer BEV perception

4.1-4.10日,花了约15个小时,入门了transformer和基于Transformer的BEV perception,记录一下分享给志同道合的人,以下是学习路径。

一、 Transformer原理

  1. 李宏毅2021深度学习课程,看了3遍self-attention和Transformer的原理,勉强看懂。因为这里是用语音识别作为例子的,和图片应用还是有点不一样。

  2. DETR论文,官方代码。官方推理代码一定要看一下,很简单,而且在网页上能直接运行,非常有助于加深理解。

  3. 两个B站的讲解视频:

    1. 干货!2022讲得最清晰的【Transformer核心项目DETR目标检测训练】DETR讲的很清楚,而且也很形象,这个老师值得推荐。
    2. 一个外国哥们讲得DETR论文也很清晰。B站视频讲解
  4. Query该怎么理解?这个回答很形象,query跟所有的key求一遍相似度,把这个相似度当做加权值乘以key,所有加权过的key相加,就是最终的结果。现在回过头看,其实自己一开始最大的问题就在于query到底是什么,理解不了。

  5. 博客 Transformer学习笔记 理解transformer源码

二、 Transformer BEV Perception

刘兰个川。可以先看看这个大佬写的BEV Perception博客,里面总结了4种方案,但作者认为第4种基于Transformer的方案才是未来的方向。

我也认为Transformer也是未来,因此以后将只关注此类的方法。

1 Camera onoy

清华,DETR3D

https://arxiv.org/abs/2110.06922

主要思想:固定900个query个数,随机初始化query。每个query对应一个3D reference point,然后反投影到图片上sample对应像素的特征。

缺点:需要预训练模型,且因为是随机初始化,训练收敛较慢

在这里插入图片描述

BEV Former

https://arxiv.org/abs/2203.17270

主要思想:将BEV下的每个grid作为query,在高度上采样N个点,投影到图像中sample到对应像素的特征,且利用了空间和时间的信息。并且最终得到的是BEV featrue,在此featrue上做Det和Seg。

**Spatial Cross-Attention:**将BEV下的每个grid作为query,在高度上采样N个点,投影到图像中获取特征。

Temporal Self-Attention: 通过self-attention代替运动补偿,align上一帧的feature到当前帧的Q

在这里插入图片描述

旷视,PETR

在这里插入图片描述

2 多模态

清华,FUTR3D

https://arxiv.org/pdf/2203.10642.pdf

在DETR的基础上,将3D reference point投影到Lidar voxel特征和radar point 特征上。

在这里插入图片描述

香港科技大学,Transfusion

https://arxiv.org/pdf/2203.11496.pdf

利用CenterPoint在heatmap上获取Top K个点作为Query(这K个点可以看做是通过lidar网络初始化了每个目标的位置,这比DETR用随机点作为Qurey收敛要快),先经过Lidar Transformer得到proposal,把这个proposal作为Query,再和image feature做cross attention。

在这里插入图片描述

Google,DeepFusion

https://arxiv.org/abs/2203.08195

直接将Lidar feature和Camera feature做cross attention,这个思路牛逼,我不看到这篇论文是绝对想不到还能这么搞的。
在这里插入图片描述

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-04-14 23:56:33  更:2022-04-15 00:03:14 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/26 11:35:51-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码