IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 【tianracer】整点tensorrt加速后的u-net巡线 -> 正文阅读

[人工智能]【tianracer】整点tensorrt加速后的u-net巡线

资料链接

一键三连~~~~
https://www.bilibili.com/video/BV1MS4y1N7fw?spm_id_from=333.999.0.0
百度云资料:
链接:https://pan.baidu.com/s/1nKMUcyIoE8VljEdpw9-XdQ
提取码:yeap
复制这段内容后打开百度网盘手机App,操作更方便哦

训练后的模型准备

本文的关键是tensorrt文件的部署,再加上车道线各不相同,模型的训练部分会省略。
大家可以根据网络的教程进行自行训练,比如:Bubbliiiing的u-net教程:https://www.bilibili.com/video/BV1rz4y117rR?spm_id_from=333.337.search-card.all.click

在torch中将.pt/.pth文件转换成onnx文件

示例代码:

import numpy as np
import torch, os
from Unet import UNet

Device = torch.device("cuda:0")
unet = UNet(in_channels=3, out_channels=1, init_features=4, WithActivateLast=True, ActivateFunLast=torch.sigmoid).to(
    Device)
unet.load_state_dict(torch.load('Output/270nice.pt', map_location=Device))
unet.eval()
# 输入的维度不要搞错了
dummy_input = torch.randn(1, 3, 128, 128, device=Device)
input_names = ['data']
output_names = ['fc']
torch.onnx.export(unet, dummy_input, 'unet_270nice.onnx', export_params=True, verbose=True, input_names=input_names,
                  output_names=output_names,opset_version=12)

安装pycuda,torch(可选)

百度云中包含安装包
首先修改./bashrc文件:

# 在文件末位添加
export PATH=/usr/local/cuda-10.2/bin:/usr/local/cuda/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:${LD_LIBRARY_PATH}
export CUDA_HOME=$CUDA_HOME:/usr/local/cuda
export PATH="$PATH:/usr/src/tensorrt/bin"

torch安装(可选):

参考链接:https://blog.csdn.net/weixin_40011280/article/details/120643540(按理说。。。好像也可以不安装torch)

# torch安装
sudo apt-get install python3-pip libopenblas-base libopenmpi-dev 
sudo pip3 install Cython
sudo pip3 install numpy==1.16.6 
sudo pip3 install torch-1.7.0-cp36-cp36m-linux_aarch64.whl
# torchvision安装
sudo apt-get install libjpeg-dev zlib1g-dev libpython3-dev libavcodec-dev libavformat-dev libswscale-dev
# 解压下载好的torchvision,并进入
sudo python3 setup.py install 

安装pycuda

参考链接:https://blog.csdn.net/weixin_44501699/article/details/106470671
./bashrc修改部分已经在上文完成

tar zxvf pycuda-2019.1.2.tar.gz    
cd pycuda-2019.1.2/  
python3 configure.py --cuda-root=/usr/local/cuda-10.2
sudo python3 setup.py install

转换模型文件

参考链接: https://blog.csdn.net/m0_51004308/article/details/116152611
./bashrc修改部分已经在上文完成

trtexec --explicitBatch=1 --onnx=源文件名称.onnx --saveEngine=输出文件名称.trt --int8 --workspace=1 --verbose

运行tensorrt加速推理文件

#!/usr/bin/env python3
import pycuda.driver as cuda
import pycuda.autoinit
import cv2
import time
from PIL import Image
import numpy as np
import os
import tensorrt as trt
import multiprocessing as mp

import rospy
from ackermann_msgs.msg import AckermannDrive


TRT_LOGGER = trt.Logger()
engine_file_path = "unet_270nice.trt"


class HostDeviceMem(object):
    def __init__(self, host_mem, device_mem):
        self.host = host_mem
        self.device = device_mem

    def __str__(self):
        return "Host:\n" + str(self.host) + "\nDevice:\n" + str(self.device)

    def __repr__(self):
        return self.__str__()


# Allocates all buffers required for an engine, i.e. host/device inputs/outputs. 分配引擎所需的所有缓冲区
def allocate_buffers(engine):
    inputs = []
    outputs = []
    bindings = []
    stream = cuda.Stream()
    for binding in engine:
        size = trt.volume(engine.get_binding_shape(
            binding)) * engine.max_batch_size
        dtype = trt.nptype(engine.get_binding_dtype(binding))
        # Allocate host and device buffers
        host_mem = cuda.pagelocked_empty(size, dtype)
        device_mem = cuda.mem_alloc(host_mem.nbytes)
        # Append the device buffer to device bindings.
        bindings.append(int(device_mem))
        # Append to the appropriate list.
        if engine.binding_is_input(binding):
            inputs.append(HostDeviceMem(host_mem, device_mem))
        else:
            outputs.append(HostDeviceMem(host_mem, device_mem))
    return inputs, outputs, bindings, stream


def do_inference_v2(context, bindings, inputs, outputs, stream):
    # Transfer input data to the GPU.
    [cuda.memcpy_htod_async(inp.device, inp.host, stream) for inp in inputs]
    # Run inference.
    context.execute_async_v2(bindings=bindings, stream_handle=stream.handle)
    # Transfer predictions back from the GPU.
    [cuda.memcpy_dtoh_async(out.host, out.device, stream) for out in outputs]
    # Synchronize the stream
    stream.synchronize()
    # Return only the host outputs.
    return [out.host for out in outputs]


def gstreamer_pipeline(
        capture_width=640,
        capture_height=480,
        display_width=640,
        display_height=480,
        framerate=30,
        flip_method=0,
):
    return (
        "nvarguscamerasrc ! "
        "video/x-raw(memory:NVMM), "
        "width=(int)%d, height=(int)%d, "
        "format=(string)NV12, framerate=(fraction)%d/1 ! "
        "nvvidconv flip-method=%d ! "
        "video/x-raw, width=(int)%d, height=(int)%d, format=(string)BGRx ! "
        "videoconvert ! "
        "video/x-raw, format=(string)BGR ! appsink"
        % (
            capture_width,
            capture_height,
            framerate,
            flip_method,
            display_width,
            display_height,
        )
    )


def ImgRead(ImgQueue):
    # 从摄像头读取数据

    cam = cv2.VideoCapture("/dev/video0", cv2.CAP_V4L2)
    cam.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
    cam.set(cv2.CAP_PROP_FRAME_HEIGHT, 480)
    cam.set(cv2.CAP_PROP_FPS, 30)

    print(cam.get(cv2.CAP_PROP_FPS))

    # cam = cv2.VideoCapture(gstreamer_pipeline(flip_method=0), cv2.CAP_GSTREAMER) # csi摄像头
    print("ImgRead process: pre cam done")

    if not cam.isOpened():
        print("ImgRead process: Unable to open camera")
    else:
        print('ImgRead process: Open camera success!')
        while True:
            ret, Img = cam.read()  # 读取摄像头
            if not ret:
                break
            while not ImgQueue.empty():
                try:
                    ImgQueue.get_nowait()
                except:
                    continue
            ImgQueue.put(Img)  # 放入新图片
            cv2.imshow('ImgRead', Img)  # 显示图片
            cv2.waitKey(1)


def main():
    print("start!")

    ImgQueue = mp.Queue()  # 先进先出队列,实现不同进程数据交互
    Mps = []  # 建立进程队列
    Mps.append(mp.Process(target=ImgRead, args=(ImgQueue,)))

    [Mp.start() for Mp in Mps]  # 启动进程
    # Mps[0].join()

    rospy.init_node('follow_line', anonymous=True)
    # 实例化消息对象
    ackermann = AckermannDrive()
    ackermann_cmd_pub = rospy.Publisher('/tianracer/ackermann_cmd', AckermannDrive, queue_size=5)
    print("ProcessImg process: ImgQueue load img")
    with open(engine_file_path, "rb") as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine(
            f.read()) as engine, engine.create_execution_context() as context:
        inputs, outputs, bindings, stream = allocate_buffers(engine)
        print("ProcessImg process: load done")

        while 1:
            if not ImgQueue.empty():
                # print("ProcessImg process:  get img")
                image_raw = ImgQueue.get()
            else:
                continue

            Img = cv2.resize(image_raw, (128, 128))
            Img = cv2.cvtColor(Img, cv2.COLOR_BGR2RGB)
            Img = Img.transpose((2, 0, 1)).astype(np.float32)
            Img = Img / 255.0
            Img = (Img - 0.46) / 0.10

            inputs[0].host = np.ascontiguousarray(Img)

            # start inference
            start = time.time()
            trt_outputs = do_inference_v2(
                context, bindings=bindings, inputs=inputs, outputs=outputs, stream=stream)

            # show
            trt_outputs = trt_outputs[0].reshape(128, 128)
            OutputImg = (trt_outputs * 255).astype(np.uint8)
            cropped1 = OutputImg[60:80, :]
            cropped2 = OutputImg[80:100, :]
            cropped3 = OutputImg[100:120, :]
            h, w = cropped1.shape  # 提取图像的信息


            M1 = cv2.moments(cropped1, False)  # 找出输出图像的中心矩,也就是车道线的中心
            M2 = cv2.moments(cropped2, False)  # 找出输出图像的中心矩,也就是车道线的中心
            M3 = cv2.moments(cropped3, False)  # 找出输出图像的中心矩,也就是车道线的中心
            try:
                cx1, cy1 = int(M1['m10'] / M1['m00']), int(M1['m01'] / M1['m00'])
                angle1 = -(int(cx1 - w / 2) / int(h - cy1))
                cx2, cy2 = int(M2['m10'] / M2['m00']), int(M2['m01'] / M2['m00'])
                angle2 = -(int(cx2 - w / 2) / int(h - cy2))
                cx3, cy3 = int(M3['m10'] / M3['m00']), int(M3['m01'] / M3['m00'])
                angle3 = -(int(cx3 - w / 2) / int(h - cy3))

                angle = (0.5*angle1 + 0.3*angle2 + 0.2*angle3)/12

            except:
                angle = 1



            ackermann.speed = 0.95
            ackermann.steering_angle = angle
            print('ackermann.steering_angle:', ackermann.steering_angle)

            if angle > 0.4 or angle < -0.4:
                ackermann.speed = 0.80

            ackermann_cmd_pub.publish(ackermann)
            finish = time.time()
            print('process time {} sec'.format(finish - start))

            OutputImg[cy1 +60 - 3:cy1 + 60 + 3, cx1 - 3:cx1 + 3] = 125
            OutputImg[cy2 + 80 - 3:cy2 + 80+3, cx2 - 3:cx2 + 3]= 125
            OutputImg[cy3+100 - 3:cy3+100+ 3, cx3 - 3:cx3 + 3]= 125

            cv2.imshow("out", OutputImg)
            #cv2.imshow("cropped", cropped)

            finish = time.time()
            print('process time {} sec'.format(finish - start))

            Key = cv2.waitKey(1)
            if Key == 'Q' or Key == 'q':
                break
    [Mp.terminate() for Mp in Mps]


if __name__ == '__main__':
    main()

运行喽

首先在tianracer上运行:

roslaunch tianracer_core tianracer_core.launch

直接python3 xxx.py就能跑起来啦

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-04-18 17:43:23  更:2022-04-18 17:44:03 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/8 3:08:05-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码