IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> MATLAB---贝叶斯算法 -> 正文阅读

[人工智能]MATLAB---贝叶斯算法

在这里插入图片描述

clear;
clc;
N=29;w=4;n=3;N1=4;N2=7;N3=8;N4=10;
A=[864.45 877.88 1418.79 1449.58;1647.31 2031.66 1775.89 1641.58;2665.9  3071.18  2772.9 3045.12]; % A belongs to w1
B=[2352.12 2297.28 2092.62 2205.36 2949.16 2802.88 2063.54
     2557.04 3340.14 3177.21 3243.74 3244.44 3017.11 3199.76
     1411.53 535.62 584.32 1202.69 662.42 1984.98 1257.21]; %B belongs to w2
C=[1739.94 1756.77 1803.58 1571.17 1845.59 1692.62 1680.67 1651.52
     1675.15 1652 1583.12 1731.04 1918.81 1867.5 1575.78 1713.28 
     2395.96 1514.98 2163.05 1735.33 2226.49 2108.97 1725.1 1570.38]; %C belongs to w3
 D=[373.3 222.85 401.3 363.34 104.8 499.85 172.78 341.59 291.02 237.63
      3087.05 3059.54 3259.94 3477.95 3389.83 3305.75 3084.49 3076.62 3095.68 3077.78
      2429.47 2002.33 2150.98 2462.86 2421.83 3196.22 2328.65 2438.63 2088.95 2251.96]; % D belongs to w4
  X1=mean(A')'
  X2=mean(B')'
  X3=mean(C')'
  X4=mean(D')'  % mean of training samples for each category 
  S1=cov(A')
  S2=cov(B')
  S3=cov(C')
  S4=cov(D') % covariance matrix of training samples for each type
  S1_=inv(S1)
  S2_=inv(S2)
  S3_=inv(S3)
  S4_=inv(S4)% inverse matrix of training samples for each type
  S11=det(S1)
  S22=det(S2)
  S33=det(S3)
  S44=det(S4) %  determinant of convariance matrix
  Pw1=N1/N
  Pw2=N2/N
  Pw3=N3/N
  Pw4=N4/N
  %Priori probability
  sample=[1702.8 1639.79 2068.74
1877.93 1860.96 1975.3
867.81 2334.68 2535.1
1831.49 1713.11 1604.68
460.69 3274.77 2172.99
2374.98 3346.98 975.31
2271.89 3482.97 946.7
1783.64 1597.99 2261.31
198.83 3250.45 2445.08
1494.63 2072.59 2550.51
1597.03 1921.52 2126.76
1598.93 1921.08 1623.33
1243.13 1814.07 3441.07
2336.31 2640.26 1599.63
354 3300.12 2373.61
2144.47 2501.62 591.51
426.31 3105.29 2057.8
1507.13 1556.89 1954.51
343.07 3271.72 2036.94
2201.94 3196.22 935.53
2232.43 3077.87 1298.87
1580.1 1752.07 2463.04
1962.4 1594.97 1835.95
1495.18 1957.44 3498.02
1125.17 1594.39 2937.73
24.22 3447.31 2145.01
1269.07 1910.72 2701.97
1802.07 1725.81 1966.35
1817.36 1927.4 2328.79
1860.45 1782.88 1875.13];
% Posterior probability as the following
for k=1:30
P1=-1/2*(sample(k,:)'-X1)'*S1_*(sample(k,:)'-X1)+log(Pw1)-1/2*log(S11);
P2=-1/2*(sample(k,:)'-X2)'*S2_*(sample(k,:)'-X2)+log(Pw2)-1/2*log(S22);
P3=-1/2*(sample(k,:)'-X3)'*S3_*(sample(k,:)'-X3)+log(Pw3)-1/2*log(S33);
P4=-1/2*(sample(k,:)'-X4)'*S4_*(sample(k,:)'-X4)+log(Pw4)-1/2*log(S44);
P=[ P1 P2 P3 P4]
Pmax=max(P)
  if P1==max(P)
    w=1
      plot3(sample(k,1),sample(k,2),sample(k,3),'ro');grid on;hold on;
 elseif P2==max(P)
    w=2
      plot3(sample(k,1),sample(k,2),sample(k,3),'b>');grid on;hold on;
  elseif  P3==max(P)
      w=3
      plot3(sample(k,1),sample(k,2),sample(k,3),'g+');grid on;hold on;
  elseif P4==max(P)
      w=4
      plot3(sample(k,1),sample(k,2),sample(k,3),'y*');grid on;hold on;
  else
    return
     end
end

X1 =

   1.0e+03 *

   1.152675000000000
   1.774110000000000
   2.888774999999999


X2 =

   1.0e+03 *

   2.394708571428571
   3.111348571428572
   1.091252857142857


X3 =

   1.0e+03 *

   1.717732500000000
   1.714585000000000
   1.930032500000000


X4 =

   1.0e+03 *

   0.300846000000000
   3.191462999999999
   2.377188000000000


S1 =

   1.0e+05 *

   1.058519049666666  -0.243672190666667   0.098992338333333
  -0.243672190666667   0.333258706000000   0.181040991333333
   0.098992338333333   0.181040991333333   0.402718747666666


S2 =

   1.0e+05 *

   1.203515706476190  -0.062665951190476   0.407666054714286
  -0.062665951190476   0.693132576142857  -0.749859064952381
   0.407666054714286  -0.749859064952381   2.818153461904762


S3 =

   1.0e+05 *

   0.076576230214286   0.014979922000000   0.153577252500000
   0.014979922000000   0.153407419428571   0.129408567714286
   0.153577252500000   0.129408567714286   1.104023086214286


S4 =

   1.0e+05 *

   0.139466530266667   0.031677262800000   0.210403123244444
   0.031677262800000   0.238012203566667   0.217209130288889
   0.210403123244444   0.217209130288889   1.088291396844444


S1_ =

   1.0e-04 *

   0.141949039856477   0.162407741955397  -0.107902416351734
   0.162407741955397   0.582841721124659  -0.301936192012301
  -0.107902416351734  -0.301936192012301   0.410570257743875


S2_ =

   1.0e-04 *

   0.087696752125058  -0.008138192696592  -0.014851386584057
  -0.008138192696592   0.203344798764831   0.055283577590749
  -0.014851386584057   0.055283577590749   0.052342535624544


S3_ =

   1.0e-03 *

   0.181335101180276   0.003963731725881  -0.025689578253096
   0.003963731725881   0.072425266359282  -0.009040743023059
  -0.025689578253096  -0.009040743023059   0.013691094543604


S4_ =

   1.0e-03 *

   0.101789647104775   0.005394613449394  -0.020756039261065
   0.005394613449394   0.051657518428909  -0.011353143289656
  -0.020756039261065  -0.011353143289656   0.015467495117128


S11 =

     7.145781915040528e+13


S22 =

     1.586222200955639e+15


S33 =

     8.416393420494519e+12


S44 =

     2.081221747302809e+13


Pw1 =

   0.137931034482759


Pw2 =

   0.241379310344828


Pw3 =

   0.275862068965517


Pw4 =

   0.344827586206897


P =

   1.0e+02 *

  -0.347512458556192  -0.377619298765584  -0.166743942325226  -1.711604042361394


Pmax =

 -16.674394232522630


w =

     3


P =

   1.0e+02 *

  -0.495808074347476  -0.320756112513402  -0.191319317589630  -1.857205886142304


Pmax =

 -19.131931758962985


w =

     3


P =

   1.0e+02 *

  -0.325380368974539  -0.368428747683632  -1.058244568535408  -0.489684173722980


Pmax =

 -32.538036897453921


w =

     1


P =

   1.0e+02 *

  -0.615273016495049  -0.366997527249912  -0.190122730734145  -1.960725427899044


Pmax =

 -19.012273073414498


w =

     3


P =

   1.0e+02 *

  -1.076977428776064  -0.429981684653266  -2.446344473636417  -0.191425237379292


Pmax =

 -19.142523737929174


w =

     4


P =

   1.0e+02 *

  -3.231237183696745  -0.193721993016539  -1.925328987369824  -3.157399127375044


Pmax =

 -19.372199301653872


w =

     2


P =

   1.0e+02 *

  -3.440689717572647  -0.201602015137132  -1.974786253508708  -2.985021050872763


Pmax =

 -20.160201513713236


w =

     2


P =

   1.0e+02 *

  -0.288734580500097  -0.379473775523955  -0.175636933742260  -1.827101013591945


Pmax =

 -17.563693374225991


w =

     3


P =

   1.0e+02 *

  -0.842886376261127  -0.507629045333813  -3.162804246123065  -0.171190135250317


Pmax =

 -17.119013525031711


w =

     4


P =

   1.0e+02 *

  -0.296604835376749  -0.318272160822555  -0.291895398730490  -1.121974885250908


Pmax =

 -29.189539873049021


w =

     3


P =

   1.0e+02 *

  -0.399949922160553  -0.325544188971303  -0.194479953664775  -1.382933382255276


Pmax =

 -19.447995366477528


w =

     3


P =

   1.0e+02 *

  -0.656213294338128  -0.332002608405710  -0.191754725963717  -1.487787547165202


Pmax =

 -19.175472596371659


w =

     3


P =

   1.0e+02 *

  -0.231507614692569  -0.422484727448799  -0.694563665246198  -1.081710555995318


Pmax =

 -23.150761469256928


w =

     1


P =

   1.0e+02 *

  -1.506823168035746  -0.205668665361725  -0.929234211936244  -2.617162702691891


Pmax =

 -20.566866536172515


w =

     2


P =

   1.0e+02 *

  -0.952728849113573  -0.473863371529697  -2.777827392501171  -0.168863473654462


Pmax =

 -16.886347365446191


w =

     4


P =

   1.0e+02 *

  -2.354394287960419  -0.250041374909669  -0.929043863540774  -2.738237743250796


Pmax =

 -25.004137490966947


w =

     2


P =

   1.0e+02 *

  -0.986750407631300  -0.411397121008969  -2.330440265977830  -0.186407830660849


Pmax =

 -18.640783066084932


w =

     4


P =

   1.0e+02 *

  -0.343114313035573  -0.414902545740842  -0.213934645115504  -1.529499654841820


Pmax =

 -21.393464511550441


w =

     3


P =

   1.0e+02 *

  -1.142255531664389  -0.439679340341178  -2.691704268553619  -0.181769227932474


Pmax =

 -18.176922793247357


w =

     4


P =

   1.0e+02 *

  -2.932195967044705  -0.191167592080381  -1.522278792058808  -2.734274695880629


Pmax =

 -19.116759208038115


w =

     2


P =

   1.0e+02 *

  -2.316066239249319  -0.191683193464180  -1.291232679381424  -2.562709417076466


Pmax =

 -19.168319346418016


w =

     2


P =

   1.0e+02 *

  -0.244898591652870  -0.359915332626235  -0.215651110406853  -1.424473067981293


Pmax =

 -21.565111040685338


w =

     3


P =

   1.0e+02 *

  -0.474226464594098  -0.382726907505632  -0.225483308033057  -2.195497646101166


Pmax =

 -22.548330803305678


w =

     3


P =

   1.0e+02 *

  -0.227586655698655  -0.381842020531792  -0.449330460662646  -1.180111808022854


Pmax =

 -22.758665569865546


w =

     1


P =

   1.0e+02 *

  -0.192873617028170  -0.447371806232734  -0.721962623729349  -1.127623480577574


Pmax =

 -19.287361702816991


w =

     1


P =

   1.0e+02 *

  -1.177652290945027  -0.539294820946693  -3.795943927020383  -0.213596680456660


Pmax =

 -21.359668045666027


w =

     4


P =

 -20.550821889462817 -36.825065884124712 -47.071600201823159 -98.798429553919632


Pmax =

 -20.550821889462817


w =

     1


P =

   1.0e+02 *

  -0.430681233913714  -0.353828466209347  -0.167483303119652  -1.819830447802539


Pmax =

 -16.748330311965223


w =

     3


P =

   1.0e+02 *

  -0.364517997189849  -0.310477375895759  -0.180932137165613  -1.652229329526691


Pmax =

 -18.093213716561252


w =

     3


P =

   1.0e+02 *

  -0.506917932386982  -0.340119629919988  -0.184785605256352  -1.897614735727016


Pmax =

 -18.478560525635178


w =

     3

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-04-18 17:43:23  更:2022-04-18 17:45:01 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/8 3:14:48-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码