| |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
-> 人工智能 -> 论文阅读 [TPAMI-2022] Meta-Transfer Learning Through Hard Tasks -> 正文阅读 |
|
[人工智能]论文阅读 [TPAMI-2022] Meta-Transfer Learning Through Hard Tasks |
论文阅读 [TPAMI-2022] Meta-Transfer Learning Through Hard Tasks论文搜索(studyai.com)搜索论文: Meta-Transfer Learning Through Hard Tasks 搜索论文: http://www.studyai.com/search/whole-site/?q=Meta-Transfer+Learning+Through+Hard+Tasks 关键字(Keywords)Task analysis; Adaptation models; Training; Feature extraction; Training data; Data models; Measurement; Few-shot learning; transfer learning; meta learning; image classification 机器学习; 机器视觉 图像分类; 半监督学习; 小样本学习; 元学习; 迁移学习 摘要(Abstract)Meta-learning has been proposed as a framework to address the challenging few-shot learning setting. 元学习被提议作为一个框架来解决具有挑战性的少数镜头学习环境。. The key idea is to leverage a large number of similar few-shot tasks in order to learn how to adapt a base-learner to a new task for which only a few labeled samples are available. 关键的想法是利用大量类似的少量任务,以便学习如何使基础学习者适应一项新任务,而该任务只有少量标记样本可用。. As deep neural networks (DNNs) tend to overfit using a few samples only, typical meta-learning models use shallow neural networks, thus limiting its effectiveness. 由于深度神经网络(DNN)往往只使用少数样本进行过度拟合,典型的元学习模型使用浅层神经网络,因此限制了其有效性。. In order to achieve top performance, some recent works tried to use the DNNs pre-trained on large-scale datasets but mostly in straight-forward manners, e.g., (1) taking their weights as a warm start of meta-training, and (2) freezing their convolutional layers as the feature extractor of base-learners. 为了获得最佳性能,最近的一些工作尝试使用在大规模数据集上预先训练的DNN,但主要是以直接的方式,例如,(1)将其权重作为元训练的热身开始,(2)冻结其卷积层作为基础学习者的特征提取器。. In this paper, we propose a novel approach called meta-transfer learning (MTL), which learns to transfer the weights of a deep NN for few-shot learning tasks. 在本文中,我们提出了一种称为元迁移学习(MTL)的新方法,该方法学习在少数镜头学习任务中转移深度神经网络的权重。. Specifically, meta refers to training multiple tasks, and transfer is achieved by learning scaling and shifting functions of DNN weights (and biases) for each task. 具体来说,meta指的是训练多个任务,而转移是通过学习每个任务的DNN权重(和偏差)的缩放和移位函数来实现的。. To further boost the learning efficiency of MTL, we introduce the hard task (HT) meta-batch scheme as an effective learning curriculum of few-shot classification tasks. 为了进一步提高MTL的学习效率,我们引入了硬任务(HT)元批处理方案,作为一种有效的少镜头分类任务学习课程。. We conduct experiments for five-class few-shot classification tasks on three challenging benchmarks, miniImageNet, tieredImageNet, and Fewshot-CIFAR100 (FC100), in both supervised and semi-supervised settings. 我们在监督和半监督环境下,在miniImageNet、tieredImageNet和Fewshot-CIFAR100(FC100)这三个具有挑战性的基准上,对五类少镜头分类任务进行了实验。. Extensive comparisons to related works validate that our MTL approach trained with the proposed HT meta-batch scheme achieves top performance. 通过与相关工作的广泛比较,验证了我们使用所提出的HT元批处理方案训练的MTL方法达到了最佳性能。. An ablation study also shows that both components contribute to fast convergence and high accuracy… 消融研究还表明,这两种成分都有助于快速收敛和高精度。。. 作者(Authors)[‘Qianru Sun’, ‘Yaoyao Liu’, ‘Zhaozheng Chen’, ‘Tat-Seng Chua’, ‘Bernt Schiele’] |
|
|
上一篇文章 下一篇文章 查看所有文章 |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 | -2025/1/8 3:18:15- |
|
网站联系: qq:121756557 email:121756557@qq.com IT数码 |