| |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
-> 人工智能 -> 深度学习模型压缩与加速技术(一):参数剪枝 -> 正文阅读 |
|
[人工智能]深度学习模型压缩与加速技术(一):参数剪枝 |
相关链接: 深度学习模型压缩与加速技术(二):参数量化 深度学习模型压缩与加速技术(三):低秩分解 深度学习模型压缩与加速技术(四):参数共享 深度学习模型压缩与加速技术(五):紧凑网络 深度学习模型压缩与加速技术(六):知识蒸馏 深度学习模型压缩与加速技术(七):混合方式 总结
A:压缩参数 B:压缩结构 参数剪枝定义参数剪枝是指在预训练好的大型模型的基础上,设计对网络参数的评价准则,以此为根据删除“冗余”参数。 分类
非结构化剪枝
结构化剪枝1.Group级别剪枝
2.filter级别剪枝对filter 的评价准则可分为以下 4 种:
参考文献主要参考:高晗,田育龙,许封元,仲盛.深度学习模型压缩与加速综述[J].软件学报,2021,32(01):68-92.DOI:10.13328/j.cnki.jos.006096. [19]LeCun Y, Denker JS, Solla SA. Optimal brain damage. In: Advances in Neural Information Processing Systems. 1990. 598-605. [20] Hassibi B, Stork DG. Second order derivatives for network pruning: Optimal brain surgeon. In: Advances in Neural Information Processing Systems. 1993. 164-171. [21] Srinivas S, Babu RV. Data-free parameter pruning for deep neural networks. arXiv Preprint arXiv: 1507.06149, 2015. [22] Dong X, Chen S, Pan S. Learning to prune deep neural networks via layer-wise optimal brain surgeon. In: Advances in Neural Information Processing Systems. 2017. 4857-4867. [23] Han S, Pool J, Tran J, et al. Learning both weights and connections for efficient neural network. In: Advances in Neural Information Processing Systems. 2015. 1135-1143. [24] Guo Y, Yao A, Chen Y. Dynamic network surgery for efficient DNNs. In: Advances in Neural Information Processing Systems. \2016. 1379-1387. [25] Lin C, Zhong Z, Wei W, et al. Synaptic strength for convolutional neural network. In: Advances in Neural Information Processing Systems. 2018. 10149-10158. [26] Lee N, Ajanthan T, Torr PHS. Snip: Single-shot network pruning based on connection sensitivity. arXiv Preprint arXiv: 1810.02340, 2018. [27] Macchi O. The coincidence approach to stochastic point processes. Advances in Applied Probability, 1975,7(1):83-122. [28] Mariet Z, Sra S. Diversity networks: Neural network compression using determinantal point processes. arXiv Preprint arXiv: 1511. 05077, 2015. [29] Kingma DP, Salimans T, Welling M. Variational dropout and the local reparameterization trick. In: Advances in Neural Information Processing Systems. 2015. 2575-2583. [30] Molchanov D, Ashukha A, Vetrov D. Variational dropout sparsifies deep neural networks. In: Proc. of the 34th Int’l Conf. on Machine Learning, Vol.70. JMLR.org, 2017. 2498-2507. [31] Louizos C, Welling M, Kingma DP. Learning sparse neural networks through $ L_0 $ regularization. arXiv Preprint arXiv: 1712. 01312, 2017. [32] Tartaglione E, Leps?y S, Fiandrotti A, et al. Learning sparse neural networks via sensitivity-driven regularization. In: Advances in Neural Information Processing Systems. 2018. 3878-3888. [33] Carreira-Perpinán MA, Idelbayev Y. “Learning-Compression” algorithms for neural net pruning. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. 2018. 8532-8541. [34] Liu Z, Xu J, Peng X, et al. Frequency-domain dynamic pruning for convolutional neural networks. In: Advances in Neural Information Processing Systems. 2018. 1043-1053. [35] Wen W, Wu C, Wang Y, et al. Learning structured sparsity in deep neural networks. In: Advances in Neural Information Processing Systems. 2016. 2074-2082. [36] Alvarez JM, Salzmann M. Learning the number of neurons in deep networks. In: Advances in Neural Information Processing Systems. 2016. 2270-2278. [37] Figurnov M, Ibraimova A, Vetrov DP, et al. Perforatedcnns: Acceleration through elimination of redundant convolutions. In: Advances in Neural Information Processing Systems. 2016. 947-955. [38] Lebedev V, Lempitsky V. Fast convnets using group-wise brain damage. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. 2016. 2554-2564. [39] Zhou H, Alvarez JM, Porikli F. Less is more: Towards compact cnns. In: Proc. of the European Conf. on Computer Vision. Cham: Springer-Verlag, 2016. 662-677. [40] Li H, Kadav A, Durdanovic I, et al. Pruning filters for efficient convnets. arXiv Preprint arXiv: 1608.08710, 2016. [41] Chen YH, Emer J, Sze V. Eyeriss: A spatial architecture for energy-efficient dataflow for convolutional neural networks. ACM SIGARCH Computer Architecture News, 2016,44(3):367-379. [42] Yang TJ, Howard A, Chen B, et al. Netadapt: Platform-aware neural network adaptation for mobile applications. In: Proc. of the European Conf. on Computer Vision (ECCV). 2018. 285-300. [43] He Y, Kang G, Dong X, et al. Soft filter pruning for accelerating deep convolutional neural networks. arXiv Preprint arXiv: 1808. 06866, 2018. [44] Liu Z, Li J, Shen Z, et al. Learning efficient convolutional networks through network slimming. In: Proc. of the IEEE Int’l Conf. on Computer Vision. 2017. 2736-2744. [45] Huang Z, Wang N. Data-driven sparse structure selection for deep neural networks. In: Proc. of the European Conf. on Computer Vision (ECCV). 2018. 304-320. [46] Ye J, Lu X, Lin Z, et al. Rethinking the smaller-norm-less-informative assumption in channel pruning of convolution layers. arXiv Preprint arXiv: 1802.00124, 2018. [47] Dai B, Zhu C, Wipf D. Compressing neural networks using the variational information bottleneck. arXiv Preprint arXiv: 1802.10399, 2018. [48] He Y, Lin J, Liu Z, et al. AMC: Automl for model compression and acceleration on mobile devices. In: Proc. of the European Conf. on Computer Vision (ECCV). 2018. 784-800. [49] Luo JH, Wu J, Lin W. Thinet: A filter level pruning method for deep neural network compression. In: Proc. of the IEEE Int’l Conf. on Computer Vision. 2017. 5058-5066. [50] He Y, Zhang X, Sun J. Channel pruning for accelerating very deep neural networks. In: Proc. of the IEEE Int’l Conf. on ComputerVision. 2017. 1389-1397. [51] Yu R, Li A, Chen CF, et al. Nisp: Pruning networks using neuron importance score propagation. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. 2018. 9194-9203. [52] Zhuang Z, Tan M, Zhuang B, et al. Discrimination-aware channel pruning for deep neural networks. In: Advances in Neural Information Processing Systems. 2018. 875-886. [53] Molchanov P, Tyree S, Karras T, et al. Pruning convolutional neural networks for resource efficient transfer learning. arXiv Preprint arXiv: 1611.06440, 2016. [54] Lin S, Ji R, Li Y, et al. Accelerating convolutional networks via global & dynamic filter pruning. In: Proc. of the IJCAI. 2018. 2425-2432. [55] Zhang T, Ye S, Zhang K, et al. A systematic DNN weight pruning framework using alternating direction method of multipliers. In: Proc. of the European Conf. on Computer Vision (ECCV). 2018. 184-199. |
|
|
上一篇文章 下一篇文章 查看所有文章 |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 | -2025/1/8 3:52:51- |
|
网站联系: qq:121756557 email:121756557@qq.com IT数码 |