IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 论文:Slicing Aided Hyper Inference and Fine-tuning for Small Object Detection通过划块的方式进行小目标检测 -> 正文阅读

[人工智能]论文:Slicing Aided Hyper Inference and Fine-tuning for Small Object Detection通过划块的方式进行小目标检测


论文地址:Slicing Aided Hyper Inference and Fine-tuning for Small Object Detection
开源代码:https://github.com/obss/sahi

1、看一下过程和最终效果

以下代码在源码的demo文件中的jupyter notebook文件。但是代码有些部分要做一点点添加或修改,可以看我下面的代码 修改。

1.1、看一下slicing的pitch效果

import os
os.getcwd()  # os.getcwd() 方法用于返回当前工作目录。

from sahi.slicing import slice_coco
from sahi.utils.file import load_json
from PIL import Image, ImageDraw
import matplotlib.pyplot as plt

# Slicing COCO Dataset into Grids
# Visualize original image and annotations:
os.environ['NUMEXPR_MAX_THREADS'] = '16'
coco_dict = load_json("demo_data/terrain2_coco.json")

f, axarr = plt.subplots(1, 1, figsize=(12, 12))
# read image
img_ind = 0
img = Image.open("demo_data/" + coco_dict["images"][img_ind]["file_name"]).convert('RGBA')
# iterate over all annotations
for ann_ind in range(len(coco_dict["annotations"])):
    # convert coco bbox to pil bbox
    xywh = coco_dict["annotations"][ann_ind]["bbox"]
    xyxy = [xywh[0], xywh[1], xywh[0]+xywh[2], xywh[1]+xywh[3]]
    # visualize bbox over image
    ImageDraw.Draw(img, 'RGBA').rectangle(xyxy, width=5)
axarr.imshow(img)

OUT输出如下:
在这里插入图片描述

# 类似于下面我详细讲解的get_slice_bboxes类
coco_dict, coco_path = slice_coco(
    coco_annotation_file_path="demo_data/terrain2_coco.json",
    image_dir="demo_data/",
    output_coco_annotation_file_name="sliced_coco.json",
    ignore_negative_samples=False,
    output_dir="demo_data/sliced/",
    slice_height=256,
    slice_width=256,
    overlap_height_ratio=0.2,
    overlap_width_ratio=0.2,
    min_area_ratio=0.1,
    verbose=True
)
# Visualize sliced images:
f, axarr = plt.subplots(4, 5, figsize=(13,13))
img_ind = 0
for ind1 in range(4):
    for ind2 in range(5):
        img = Image.open("demo_data/sliced/" + coco_dict["images"][img_ind]["file_name"])
        axarr[ind1, ind2].imshow(img)
        img_ind += 1

OUT:
在这里插入图片描述

f, axarr = plt.subplots(4, 5, figsize=(13,13))
img_ind = 0
for row_ind in range(4):
    for column_ind in range(5):
        # read image
        img = Image.open("demo_data/sliced/" + coco_dict["images"][img_ind]["file_name"]).convert('RGBA')
        # iterate over all annotations
        for ann_ind in range(len(coco_dict["annotations"])):
            # find annotations that belong the selected image
            if coco_dict["annotations"][ann_ind]["image_id"] == coco_dict["images"][img_ind]["id"]:
                # convert coco bbox to pil bbox
                xywh = coco_dict["annotations"][ann_ind]["bbox"]
                xyxy = [xywh[0], xywh[1], xywh[0]+xywh[2], xywh[1]+xywh[3]]
                # visualize bbox over image
                ImageDraw.Draw(img, 'RGBA').rectangle(xyxy, width=5)
            axarr[row_ind, column_ind].imshow(img)
        img_ind += 1

OUT:
在这里插入图片描述

1.2、slicing结合Yolov5最终效果

# Install latest version of SAHI and YOLOv5:
!pip install -U torch sahi yolov5 -i http://pypi.douban.com/simple/ --trusted-host pypi.douban.com
import os
os.environ['NUMEXPR_MAX_THREADS'] = '16' # 必须要加,不然报错,源码中并没有这行代码
os.getcwd()

# Download a yolov5 model and two test images:
# download YOLOV5S6 model to 'models/yolov5s6.pt'
yolov5_model_path = 'models/yolov5s6.pt'
download_yolov5s6_model(destination_path=yolov5_model_path)

# download test images into demo_data folder
download_from_url('https://raw.githubusercontent.com/obss/sahi/main/demo/demo_data/small-vehicles1.jpeg', 'demo_data/small-vehicles1.jpeg')
download_from_url('https://raw.githubusercontent.com/obss/sahi/main/demo/demo_data/terrain2.png', 'demo_data/terrain2.png')
# Standard Inference with a YOLOv5 Model
# Instantiate a detection model by defining model weight path and other parameters:
detection_model = Yolov5DetectionModel(
    model_path=yolov5_model_path,
    confidence_threshold=0.3,
    device="cpu", # or 'cuda:0'
)

# Perform prediction by feeding the get_prediction function with an image path and a DetectionModel instance:
result = get_prediction("demo_data/small-vehicles1.jpeg", detection_model)

# Or perform prediction by feeding the get_prediction function with a numpy image and a DetectionModel instance:
result = get_prediction(read_image("demo_data/small-vehicles1.jpeg"), detection_model)
# Visualize predicted bounding boxes and masks over the original image:
result.export_visuals(export_dir="demo_data/")

Image("demo_data/prediction_visual.png")

用Yolov5模型检测出的结果如下:
在这里插入图片描述

#  Sliced Inference with a YOLOv5 Model
# To perform sliced prediction we need to specify slice parameters. In this example we will perform prediction over slices of 256x256 with an overlap ratio of 0.2:
result = get_sliced_prediction(
    "demo_data/small-vehicles1.jpeg",
    detection_model,
    slice_height = 256,
    slice_width = 256,
    overlap_height_ratio = 0.2,
    overlap_width_ratio = 0.2
)
# Visualize predicted bounding boxes and masks over the original image:
result.export_visuals(export_dir="demo_data/")

Image("demo_data/prediction_visual.png")

OUT:Sliced Inference with a YOLOv5 Model如下图所示:
在这里插入图片描述
由上面两张检测结果图显示:一目了然,加入Slicing方法的Yolov5模型在检测小目标的性能上大大提高。

2、论文详解Slicing Aided Hyper Inference (SAHI)

提出了一个名为切片辅助超推理(SAHI)的开源框架,该框架为小对象检测提供了一个通用的切片辅助推理和微调管道。该技术已与Detectron2、MMDetection和YOLOv5模型集成。

在这里插入图片描述
Slicing Aided Hyper Inference (SAHI)和滑动窗口的思想类似,作者将图像分割成多个重叠的切片slices。这样就使得输入网络的图像的小目标占比较高。在这里插入图片描述

2.1、Slicing Aided Fine-tuning (SF)

从fine-tuning数据中,随机裁剪出一个随机区域等比例放缩到输入图像大小,和原图一起用于fine-tuning。
在这里插入图片描述
在这里插入图片描述

2.2、Slicing aided hyper inference

在这里插入图片描述
在这里插入图片描述

3、本论文中的创新( 切片技术) 详解

3.1、slicing bbox怎么得到的

def get_slice_bboxes(
    image_height: int,
    image_width: int,
    slice_height: int = 512,
    slice_width: int = 512,
    overlap_height_ratio: int = 0.2,
    overlap_width_ratio: int = 0.2,
) -> List[List[int]]:
    """Slices `image_pil` in crops.
    Corner values of each slice will be generated using the `slice_height`,每个切片的角值将使用“切片高度”。。。生成`
    `slice_width`, `overlap_height_ratio` and `overlap_width_ratio` arguments.

    Args:
        image_height (int): Height of the original image.
        image_width (int): Width of the original image.
        slice_height (int): Height of each slice. Default 512.
        slice_width (int): Width of each slice. Default 512.
        overlap_height_ratio(float): Fractional overlap in height of each
            slice (e.g. an overlap of 0.2 for a slice of size 100 yields an
            overlap of 20 pixels). Default 0.2.(每一层的高度部分重叠切片(例如,尺寸为100的切片重叠0.2会产生重叠20像素)。默认值为0.2。
        overlap_width_ratio(float): Fractional overlap in width of each
            slice (e.g. an overlap of 0.2 for a slice of size 100 yields an
            overlap of 20 pixels). Default 0.2.

    Returns:
        List[List[int]]: List of 4 corner coordinates for each N slices.(每N个切片的4个角坐标列表).
            [
                [slice_0_left, slice_0_top, slice_0_right, slice_0_bottom],
                ...
                [slice_N_left, slice_N_top, slice_N_right, slice_N_bottom]
            ]
    """
    slice_bboxes = []
    y_max = y_min = 0
    y_overlap = int(overlap_height_ratio * slice_height)
    x_overlap = int(overlap_width_ratio * slice_width)
    while y_max < image_height:
        x_min = x_max = 0
        y_max = y_min + slice_height
        while x_max < image_width:
            x_max = x_min + slice_width
            if y_max > image_height or x_max > image_width:
                xmax = min(image_width, x_max)
                ymax = min(image_height, y_max)
                xmin = max(0, xmax - slice_width)
                ymin = max(0, ymax - slice_height)
                slice_bboxes.append([xmin, ymin, xmax, ymax])
            else:
                slice_bboxes.append([x_min, y_min, x_max, y_max])
            x_min = x_max - x_overlap   # 使前后两张切片的
        y_min = y_max - y_overlap
    return slice_bboxes

执行的过程中的参数详情如下:
在这里插入图片描述最后由一张原始图片 682 × 1024 682\times1024 682×1024图片经过get_slice_bboxes得到的20个slice_bboxes如下:
在这里插入图片描述
我把上述get_slice_bboxes过程,用图详细的把过程画了出来。如下图所示:
在这里插入图片描述

3.2、slice_coco类的完整执行过程

通过slice_coco得到coco_dict, coco_path,具体代码流程由三部分组成
我们先看一下生成的coco_dict, coco_path分别是什么?
在这里插入图片描述

1、先初始化slice_coco类

coco_dict, coco_path = slice_coco(
    coco_annotation_file_path="demo_data/terrain2_coco.json",
    image_dir="demo_data/",
    output_coco_annotation_file_name="sliced_coco.json",
    ignore_negative_samples=False,
    output_dir="demo_data/sliced/",
    slice_height=256,
    slice_width=256,
    overlap_height_ratio=0.2,
    overlap_width_ratio=0.2,
    min_area_ratio=0.1,
    verbose=True
)

2、slice_coco具体类的过程代码如下

def slice_coco(
    coco_annotation_file_path: str,
    image_dir: str,
    output_coco_annotation_file_name: str,
    output_dir: Optional[str] = None,
    ignore_negative_samples: bool = False,
    slice_height: int = 512,
    slice_width: int = 512,
    overlap_height_ratio: float = 0.2,
    overlap_width_ratio: float = 0.2,
    min_area_ratio: float = 0.1,
    out_ext: Optional[str] = None,
    verbose: bool = False,
) -> List[Union[Dict, str]]:
    # read coco file
    coco_dict: Dict = load_json(coco_annotation_file_path)
    # create image_id_to_annotation_list mapping
    coco = Coco.from_coco_dict_or_path(coco_dict)
    # init sliced coco_utils.CocoImage list
    sliced_coco_images: List = []

    # iterate over images and slice
    for coco_image in tqdm(coco.images):
        # get image path
        image_path: str = os.path.join(image_dir, coco_image.file_name)
        # get annotation json list corresponding to selected coco image获取与所选coco图像对应的注释json列表
        # slice image
        try:
            slice_image_result = slice_image(
                image=image_path,
                coco_annotation_list=coco_image.annotations,
                output_file_name=Path(coco_image.file_name).stem,
                output_dir=output_dir,
                slice_height=slice_height,
                slice_width=slice_width,
                overlap_height_ratio=overlap_height_ratio,
                overlap_width_ratio=overlap_width_ratio,
                min_area_ratio=min_area_ratio,
                out_ext=out_ext,
                verbose=verbose,
            )
            # append slice outputs
            sliced_coco_images.extend(slice_image_result.coco_images)
        except TopologicalError:
            logger.warning(f"Invalid annotation found, skipping this image: {image_path}")

    # create and save coco dict
    coco_dict = create_coco_dict(
        sliced_coco_images,
        coco_dict["categories"],
        ignore_negative_samples=ignore_negative_samples,
    )
    save_path = ""
    if output_coco_annotation_file_name and output_dir:
        save_path = Path(output_dir) / (output_coco_annotation_file_name + "_coco.json")
        save_json(coco_dict, save_path)

    return coco_dict, save_path

3、上述代码中的包含的slice_image类代码具体如下:

def slice_image(
    image: Union[str, Image.Image],
    coco_annotation_list: Optional[CocoAnnotation] = None,
    output_file_name: Optional[str] = None,
    output_dir: Optional[str] = None,
    slice_height: int = 512,
    slice_width: int = 512,
    overlap_height_ratio: float = 0.2,
    overlap_width_ratio: float = 0.2,
    min_area_ratio: float = 0.1,
    out_ext: Optional[str] = None,
    verbose: bool = False,
) -> SliceImageResult:
    # define verboseprint
    verboselog = logger.info if verbose else lambda *a, **k: None

    def _export_single_slice(image: np.ndarray, output_dir: str, slice_file_name: str):
        image_pil = read_image_as_pil(image)
        slice_file_path = str(Path(output_dir) / slice_file_name)
        # export sliced image
        image_pil.save(slice_file_path)
        verboselog("sliced image path: " + slice_file_path)

    # create outdir if not present
    if output_dir is not None:
        Path(output_dir).mkdir(parents=True, exist_ok=True)

    # read image
    image_pil = read_image_as_pil(image)
    verboselog("image.shape: " + str(image_pil.size))

    image_width, image_height = image_pil.size
    if not (image_width != 0 and image_height != 0):
        raise RuntimeError(f"invalid image size: {image_pil.size} for 'slice_image'.")
    slice_bboxes = get_slice_bboxes(
        image_height=image_height,
        image_width=image_width,
        slice_height=slice_height,
        slice_width=slice_width,
        overlap_height_ratio=overlap_height_ratio,
        overlap_width_ratio=overlap_width_ratio,
    )

    t0 = time.time()
    n_ims = 0

    # init images and annotations lists
    sliced_image_result = SliceImageResult(original_image_size=[image_height, image_width], image_dir=output_dir)

    # iterate over slices  迭代切片
    for slice_bbox in slice_bboxes:
        n_ims += 1

        # extract image 提取图像
        image_pil_slice = image_pil.crop(slice_bbox)

        # process annotations if coco_annotations is given 如果给出coco——annotation,则处理annotation
        if coco_annotation_list is not None:
            sliced_coco_annotation_list = process_coco_annotations(coco_annotation_list, slice_bbox, min_area_ratio)

        # set image file suffixes设置图像文件后缀
        slice_suffixes = "_".join(map(str, slice_bbox))  # 0_0_256_256
        if out_ext:
            suffix = out_ext
        else:
            try:
                suffix = Path(image_pil.filename).suffix
            except AttributeError:
                suffix = ".jpg"

        # set image file name and path
        # 如output_file_name = terrain2 ,slice_suffixe = 0_0_256_256, suffix = .jpg
        # 所以slice_file_name = terrain2_0_0_256_256.jpg
        slice_file_name = f"{output_file_name}_{slice_suffixes}{suffix}"

        # create coco image
        slice_width = slice_bbox[2] - slice_bbox[0]
        slice_height = slice_bbox[3] - slice_bbox[1]
        coco_image = CocoImage(file_name=slice_file_name, height=slice_height, width=slice_width)

        # append coco annotations (if present) to coco image将coco注释(如果存在)附加到coco图像
        if coco_annotation_list:
            for coco_annotation in sliced_coco_annotation_list:
                coco_image.add_annotation(coco_annotation)

        # create sliced image and append to sliced_image_result创建切片图像并附加到切片图像结果
        sliced_image = SlicedImage(
            image=np.asarray(image_pil_slice),
            coco_image=coco_image,
            starting_pixel=[slice_bbox[0], slice_bbox[1]],
        )
        sliced_image_result.add_sliced_image(sliced_image)

    # export slices if output directory is provided
    if output_file_name and output_dir:
        conc_exec = concurrent.futures.ThreadPoolExecutor(max_workers=MAX_WORKERS)
        conc_exec.map(
            _export_single_slice,
            sliced_image_result.images,
            [output_dir] * len(sliced_image_result),
            sliced_image_result.filenames,
        )

    verboselog(
        "Num slices: " + str(n_ims) + " slice_height: " + str(slice_height) + " slice_width: " + str(slice_width),
    )

    return sliced_image_result

3.2.1、得到sciling_img_bbox和sciling_annotation

n_ims = 0

    # init images and annotations lists
    # 获得到原始图片的路径,以及宽高
    sliced_image_result = SliceImageResult(original_image_size=[image_height, image_width], image_dir=output_dir)

    # iterate over slices  迭代切片
    for slice_bbox in slice_bboxes:
        n_ims += 1

        # extract image 提取图像
        # 也就是把对应坐标的sciling bbox从原图中裁剪出来
        image_pil_slice = image_pil.crop(slice_bbox)

        # process annotations if coco_annotations is given 如果给出coco——annotation,则处理annotation
        # 
        if coco_annotation_list is not None:
            sliced_coco_annotation_list = process_coco_annotations(coco_annotation_list, slice_bbox, min_area_ratio)

        # set image file suffixes设置图像文件后缀
        slice_suffixes = "_".join(map(str, slice_bbox))  # 0_0_256_256
        if out_ext:
            suffix = out_ext
        else:
            try:
                suffix = Path(image_pil.filename).suffix
            except AttributeError:
                suffix = ".jpg"

        # set image file name and path
        # 如output_file_name = terrain2 ,slice_suffixe = 0_0_256_256, suffix = .jpg
        # 就是添加slicing bbox在原图中裁剪出对应坐标的图形的名子。
        # 以文中size=(682,1024)原始图片为例,会产生20个这个名字。
        # 所以slice_file_name = terrain2_0_0_256_256.jpg
        slice_file_name = f"{output_file_name}_{slice_suffixes}{suffix}"

        # create coco image
        # 把上面在原图裁剪的20 个slicing bbox的坐标类型转化为coco数据集的格式。
        slice_width = slice_bbox[2] - slice_bbox[0]
        slice_height = slice_bbox[3] - slice_bbox[1]
        coco_image = CocoImage(file_name=slice_file_name, height=slice_height, width=slice_width)
        
        # 
        # append coco annotations (if present) to coco image将coco注释(如果存在)附加到coco图像
        if coco_annotation_list:
            for coco_annotation in sliced_coco_annotation_list:
                coco_image.add_annotation(coco_annotation)

        # create sliced image and append to sliced_image_result创建切片图像并附加到切片图像结果
        sliced_image = SlicedImage(
            image=np.asarray(image_pil_slice),
            coco_image=coco_image,
            starting_pixel=[slice_bbox[0], slice_bbox[1]],
        )
        sliced_image_result.add_sliced_image(sliced_image)

2.2.1.1、process_coco_annotations类详解

首先我们记住两个名称:

  • coco_annotation_list:原始图片的annotation中的gt_box,如下图所示:

在这里插入图片描述

  • sliced_coco_annotation_list:就是sciling box中所对应的annotation,是通过上述 coco_annotation_list与slice_bbox经过process_coco_annotations得到的。
  • sliced_coco_annotation_list = process_coco_annotations(coco_annotation_list, slice_bbox, min_area_ratio)

process_coco_annotations代码如下:

def process_coco_annotations(coco_annotation_list: List[CocoAnnotation], slice_bbox: List[int], min_area_ratio) -> bool:
    """Slices and filters given list of CocoAnnotation objects with given
    'slice_bbox' and 'min_area_ratio'.

    Args:
        coco_annotation_list (List[CocoAnnotation])
        slice_bbox (List[int]): Generated from `get_slice_bboxes`.
            Format for each slice bbox: [x_min, y_min, x_max, y_max].
        min_area_ratio (float): If the cropped annotation area to original
            annotation ratio is smaller than this value, the annotation is
            filtered out. Default 0.1.

    Returns:
        (List[CocoAnnotation]): Sliced annotations.
    """

    sliced_coco_annotation_list: List[CocoAnnotation] = []
    for coco_annotation in coco_annotation_list:
        if annotation_inside_slice(coco_annotation.json, slice_bbox): # 检查原始图片中的annotation坐标是否有位于切片bbox坐标内
            sliced_coco_annotation = coco_annotation.get_sliced_coco_annotation(slice_bbox)
            if sliced_coco_annotation.area / coco_annotation.area >= min_area_ratio:
                sliced_coco_annotation_list.append(sliced_coco_annotation)
    return sliced_coco_annotation_list
2.2.1.1.1、annotation_inside_slice与get_sliced_coco_annotation类

检查原始图片中的annotation坐标是否位于切片bbox坐标内
annotation_inside_slice类:

def annotation_inside_slice(annotation: Dict, slice_bbox: List[int]) -> bool:
    """Check whether annotation coordinates lie inside slice coordinates.检查注释坐标是否位于切片坐标内

    Args:
        annotation (dict): Single annotation entry in COCO format.COCO格式的单个注释条目
        slice_bbox (List[int]): Generated from `get_slice_bboxes`.
            Format for each slice bbox: [x_min, y_min, x_max, y_max].

    Returns:
        (bool): True if any annotation coordinate lies inside slice.如果任何注释坐标位于切片内,则为True。
    """
    #  提取原始图片(coco数据集格式)的 annotation 中的标注狂坐标。
    #  coco中的标注坐标指的是左上角坐标,以及宽和高。
    left, top, width, height = annotation["bbox"] 

    right = left + width
    bottom = top + height

    if left >= slice_bbox[2]:
        return False
    if top >= slice_bbox[3]:
        return False
    if right <= slice_bbox[0]:
        return False
    if bottom <= slice_bbox[1]:
        return False

    return True

get_sliced_coco_annotation类

get_intersection函数:是指求出原图中annotation与sciling bbox相交的部分.

注意:return:

intersection_shapely_annotation
category_id=self.category_id,
category_name=self.category_name 原annotation的类别
iscrowd=self.iscrowd

    def get_sliced_coco_annotation(self, slice_bbox: List[int]):
        shapely_polygon = box(slice_bbox[0], slice_bbox[1], slice_bbox[2], slice_bbox[3])
        intersection_shapely_annotation = self._shapely_annotation.get_intersection(shapely_polygon) 
        return CocoAnnotation.from_shapely_annotation(
            intersection_shapely_annotation,
            category_id=self.category_id,
            category_name=self.category_name,
            iscrowd=self.iscrowd,
        )

上述process_coco_annotations类详解过程可能比较抽象,可以看以下本人手工制图能更清晰的了解:
在这里插入图片描述

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-04-22 18:36:57  更:2022-04-22 18:37:24 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/8 3:53:52-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码