IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 行人重识别Reid(一):Person_reID_baseline_pytorch -> 正文阅读

[人工智能]行人重识别Reid(一):Person_reID_baseline_pytorch

行人重识别Reid(一):Person_reID_baseline_pytorch



前言

最近项目上有人员轨迹识别的需求,传统使用手机基站定位法数据获取难度大,后来确定还是用图像识别的方法来做,据了解可以借助REID技术来实现。


一、reid 定义

1、什么是reid

简单理解就是,我们需要根据某行人A的图像,在图像候选集中找到该行人A的其他图像。reid 技术在实际场景中有着很重要的作用。

使用 reid 技术,我们便可以在一个监控系统中,构建行人的运动轨迹,并应用到各种下游任务。比如在小区监控系统中,我们在某个时刻锁定犯人A,根据 reid 技术,我们就可以在整个监控系统的中,自动的找出犯人A在整个小区监控中出现的图片,并确定他的运动轨迹,最终辅助警察抓捕。再比如在智慧商业场景中,我们可以根据 reid 技术描绘出每个消费者的商场运动轨迹和区域驻留时间,从而优化客流、辅助商品推荐等。。

reid 算法可以分解为以下3步:

  1. 特征提取:给定一个查询图片(query image)和大量的数据库图片(gallery
    images),提取出它们的语义特征。在这个特征空间,同一个人的图片距离尽可能小,不同人图片距离尽可能大。目前主流的 reid算法使用深度卷机神经网络(CNN,如 ResNet50)提取特征。
  2. 距离计算:得到查询特征(query feature)和数据库特征(gallery
    features)后,计算查询图片和数据库图片的距离。通常使用欧式(euclidean)、余弦(cosine)距离等。
  3. 排序返回:得到距离后,我们可以使用排序算法对样本进行排序,通过卡距离阈值或者K近邻的方法,返回最终样本。一般使用快速排序算法,其复杂度是
    O(NlogN),N 为数据库图片数量。

2、reid_baseline

reid_baseline(Person_reID_baseline_pytorch):reid_baseline 是一个基于pytorch实现的,小巧、友好并且强大的 reid baseline。它的性能媲美当前最好的公开方法(强大),支持fp16精度用2GB显存进行训练(小巧),并且提供了一个8分钟快速教程入门reid(新手友好)。该 baseline 由 Zhezhong Zheng 博士于2017年发布,至今 github star 数量已经超过 2k。

二、准备工作

1、环境

依赖pytorch环境,之前已配置好,在这复用即可,配置方法参考文章:图像识别(二):anaconda 配置pytorch环境,运行yolov5

2、code

项目地址:https://github.com/layumi/Person_reID_baseline_pytorch

3、数据

下载地址Market-1501

数据集简介:
Market-1501数据集在清华大学校园中采集,夏天拍摄,在2015年构建并公开。它包括由6个摄像头(其中5个高清摄像头和1个低清摄像头)拍摄的1501个行人的32217张图片。图片分辨率统一为128X64。每个行人至少由2个摄像头捕获到,并且在一个摄像头中可能具有多张图像。
训练集bounding_box_train有751人,包含12,936张图像,平均每个人有17.2张训练数据;
测试集bounding_box_test有750人,包含19,732张图像,平均每个人有26.3张测试数据;
查询集query有3368张查询图像。
该数据集提供的固定数量的训练集和测试集均可以在single-shot或multi-shot测试设置下使用。
参考文章行人重识别Market1501数据集介绍

三、训练

1、生成训练数据

MARK数据集下载解压后,文件分布如下:
在这里插入图片描述
准备训练数据需要通过prepare.py,将第五行的地址改为自己本地的地址
在这里插入图片描述
然后运行prepare.py文件,会生成一个pytorch文件夹
在这里插入图片描述
进入pytorch文件夹,文件分布如下:
在这里插入图片描述
现在我们已经成功准备好了图像来做后面的训练了。

2、开始训练

我们可以输入如下命令开始训练:

python train.py --gpu_ids 0 --name ft_ResNet50 --train_all --batchsize 32  --data_dir your_data_path

修改后

python train.py --gpu_ids 0 --name ft_ResNet50 --train_all --batchsize 32  --data_dir ./Market/pytorch/

默认训练60代,可修改train.py文件中默认参数
在这里插入图片描述

四、测试

1、特征提取

这一部分, 我们载入我们刚刚训练的模型 来抽取每张图片的视觉特征

python test.py --gpu_ids 0 --name ft_ResNet50 --test_dir your_data_path  --batchsize 32 --which_epoch 59

修改后

python test.py --gpu_ids 0 --name ft_ResNet50 --test_dir ./Market/pytorch/  --batchsize 32 --which_epoch 59

–gpu_ids which gpu to run.

–name the dir name of the trained model.

–batchsize batch size.

–which_epoch select the i-th model.

–data_dir the path of the testing data.

2、评测

现在我们有了每张图片的特征。 我们需要做的事情只有用特征去匹配图像。

python evaluate_gpu.py

mAP:0.7
在这里插入图片描述

五、简单的可视化

可视化结果,

python demo.py --query_index 600

在这里插入图片描述
–query_index which query you want to test. You may select a number in the range of 0 ~ 3367.

在这里插入图片描述
上图显示最相似的10张图片,可应用的场景很多。在实际人员轨迹应用中,可通过输出的摄像头编号,以及拍摄时间描述目标人员的行为轨迹。

六、总结

按照教程体验了一下reid_baseline,这个步骤比较简单,特记录一下,正在学习其他reid,希望后续能有所突破。

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-04-22 18:36:57  更:2022-04-22 18:38:51 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/26 10:51:44-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码