IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> Pandas中loc和iloc函数(提取某几列或者行的数据) -> 正文阅读

[人工智能]Pandas中loc和iloc函数(提取某几列或者行的数据)

data.iloc[ A:B ,C:D ]

用法:逗号前面表示的是取哪些行,逗号后面表示取哪些列

例如1:data.iloc[ 0:2?,1:2?]? # 取第0-2行和1-2列交叉的所有的数据

例如2:data.iloc[ :?,1:2?]? # 取所有行和1-2列交叉的所有的数据

例如3:data.iloc[ :?, :?]? # 取所有行和所有列的所有的数据

例如4:data.iloc[ :?, [1,2,3]?]? # 取所有行和第1,2,3列交叉的所有的数据

?

loc函数:通过行索引 "Index" 中的具体值来取行数据(如取"Index"为"A"的行

iloc函数:通过行号来取行数据(如取第二行的数据

本文给出loc、iloc常见的五种用法,并附上详细代码。

1. 利用loc、iloc提取某一行数据

import numpy as np
import pandas as pd
#创建一个Dataframe
data=pd.DataFrame(np.arange(16).reshape(4,4),index=list('abcd'),columns=list('ABCD'))
 
In[1]: data
Out[1]: 
    A   B   C   D
a   0   1   2   3
b   4   5   6   7
c   8   9  10  11
d  12  13  14  15
 
#取索引为'a'的行
In[2]: data.loc['a']
Out[2]:
A    0
B    1
C    2
D    3
 
#取第一行数据,索引为'a'的行就是第一行,所以结果相同
In[3]: data.iloc[0]
Out[3]:
A    0
B    1
C    2
D    3

2. 利用loc、iloc提取某一列或者几列数据

In[4]:data.loc[:,['A']] #取'A'列所有行,多取几列格式为 data.loc[:,['A','B']]
Out[4]: 
    A
a   0
b   4
c   8
d  12
 
In[5]:data.iloc[:,[0]] #取第0列所有行,多取几列格式为 data.iloc[:,[0,1]],取第0列和第1列的所有行
Out[5]: 
    A
a   0
b   4
c   8
d  12
 

4.利用loc、iloc提取所有数据

In[8]:data.loc[:,:] #取A,B,C,D列的所有行
Out[8]: 
    A   B   C   D
a   0   1   2   3
b   4   5   6   7
c   8   9  10  11
d  12  13  14  15
 
In[9]:data.iloc[:,:] #取第0,1,2,3列的所有行
Out[9]: 
    A   B   C   D
a   0   1   2   3
b   4   5   6   7
c   8   9  10  11
d  12  13  14  15

5.利用loc函数,根据某个数据来提取数据所在的行

In[10]: data.loc[data['A']==0] #提取data数据(筛选条件: A列中数字为0所在的行数据)
Out[10]: 
   A  B  C  D
a  0  1  2  3
 
In[11]: data.loc[(data['A']==0)&(data['B']==2)] #提取data数据(多个筛选条件)
Out[11]: 
   A  B  C  D
a  0  1  2  3

利用loc函数的时候,当index相同时,会将相同的Index全部提取出来,

优点是:如果index是人名,数据框为所有人的数据,那么我可以将某个人的多条数据提取出来分析;

缺点是:如果index不具有特定意义,而且重复,那么提取的数据需要进一步处理,可用.reset_index()函数重置index

这里给一个实际场景:

Excel中的某一部分如下所示:

此时我们想取到Excel表格的第2列到倒数第二列所有的数据,那么我使用以下代码:

o_train = pd.read_csv('./dataset/train.csv')
o_test = pd.read_csv('./dataset/test.csv')

print(o_train.shape) #(1314, 81)
print(o_test.shape)  #(146, 81)

### 'MSSubClass':'SaleCondition'是第二列到倒数第二列
all_features = pd.concat((o_train.loc[:, 'MSSubClass':'SaleCondition'], o_test.loc[:, 'MSSubClass':'SaleCondition'])) # [1460 rows x 79 columns]

all_labels   = pd.concat((o_train.loc[:, 'SalePrice'], o_test.loc[:, 'SalePrice'])) # Length: 1460,

?得到如下结果:

参考下文:Pandas中loc和iloc函数用法详解(源码+实例)_我是二师兄的博客-CSDN博客_iloc函数用法

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-04-22 18:36:57  更:2022-04-22 18:40:56 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/26 10:24:18-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码