1、前言
? ? ? ? 这篇文章废话不多说了,主要史帅基于PV-RCNN上面进行的改进,本文不会从头构建网络并进行解析,对于PV-RCNN不了解的小伙伴可以先去看我之前的文章。
PV-RCNN论文和逐代码解析(一)_NNNNNathan的博客-CSDN博客_pvrcnn代码复现1、前言当前的点云3D检测主要分为两大类,第一类为grid-based的方法,第二类为point-based的方法。grid-based的方法将不规则的点云数据转换成规则的3D voxels (VoxelNet, SECOND , Fast PointRCNN, Part A^2 Net)或者转化成 2D的BEV特征图(PIXOR, HDNet,PointPillars),这种方法可以将不规则的数据转换后使用3D或者2D的CNN来高效的进行特征提取。...https://blog.csdn.net/qq_41366026/article/details/123349889?spm=1001.2014.3001.5501
PV-RCNN++论文地址:https://arxiv.org/abs/2102.00463https://arxiv.org/abs/2102.00463
PV-RCNN? PCDet代码仓库:GitHub - sshaoshuai/OpenPCDet: OpenPCDet Toolbox for LiDAR-based 3D Object Detection.https://github.com/sshaoshuai/OpenPCDet
2、网络结构解析
? ? ? ? PV-RCNN++在PV-RCNN的基础上进行了主要的两点改进:
????????1、将原来的FPS(最远点采样)换成了sectorized proposal-centric keypoint sampling strategy(提议中心的分块关键点采样 ?),使得有限的关键点可以更加的聚集在proposal区域范围内,来更多的编码有效前景点特征用于后面的proposal refinement。同时sectorized farthest point sampling在不同sectors(分块区域 )的关键点采样是平行进行的,这样不仅保证了分块区域中采样的关键点在该分块点集中的均匀分布,还相比于vailla FPS(普通的最远点采样)算法减少了两倍的复杂度。
????????2、提出了新颖的local feature aggregation module(局部特征聚合模块):VectorPool aggregation;该模块可以更有效的对稀疏和不规则的点云数据进行编码。
同时作者再次强调,局部位置中点与点之间的相对位置信息对于描述局部的空间几何信息是十分有效的。
PV-RCNN++中的8个模块(其中两个改进点都集中在了VoxelSetAbstraction中)
1、MeanVFE? ? ? ? (voxel feature encoding)
2、VoxelBackBone8x? ? (3D backbone)????????
3、HeightCompression (Z轴方向堆叠)
4、VoxelSetAbstraction (VSA模块)
5、BaseBEVBackbone? ?(2D backbone for RPN)
6、AnchorHeadSingle? ? ? ? (一阶预测头)
7、PointHeadSimple Predicted Keypoint Weighting? (PKW模块)
8、PVRCNNHead? ? ? ? (二阶预测头)
注:由于作者在OpenPCDet仓库上并没有正式重新组织并发布PV-RCNN++在KITTI数据集上的的配置和预训练模型文件;此处为了方便解析,根据issue中作者提供的配置来进行,可参考:
https://github.com/open-mmlab/OpenPCDet/issues/829https://github.com/open-mmlab/OpenPCDet/issues/829
KITTI中PV-RCNN++的配置文件:
CLASS_NAMES: ['Car', 'Pedestrian', 'Cyclist']
DATA_CONFIG:
_BASE_CONFIG_: cfgs/dataset_configs/kitti_dataset.yaml
MODEL:
NAME: PVRCNNPlusPlus
VFE:
NAME: MeanVFE
BACKBONE_3D:
NAME: VoxelBackBone8x
MAP_TO_BEV:
NAME: HeightCompression
NUM_BEV_FEATURES: 256
BACKBONE_2D:
NAME: BaseBEVBackbone
LAYER_NUMS: [5, 5]
LAYER_STRIDES: [1, 2]
NUM_FILTERS: [128, 256]
UPSAMPLE_STRIDES: [1, 2]
NUM_UPSAMPLE_FILTERS: [256, 256]
DENSE_HEAD:
NAME: AnchorHeadSingle
CLASS_AGNOSTIC: False
USE_DIRECTION_CLASSIFIER: True
DIR_OFFSET: 0.78539
DIR_LIMIT_OFFSET: 0.0
NUM_DIR_BINS: 2
ANCHOR_GENERATOR_CONFIG: [
{
'class_name': 'Car',
'anchor_sizes': [[3.9, 1.6, 1.56]],
'anchor_rotations': [0, 1.57],
'anchor_bottom_heights': [-1.78],
'align_center': False,
'feature_map_stride': 8,
'matched_threshold': 0.6,
'unmatched_threshold': 0.45
},
{
'class_name': 'Pedestrian',
'anchor_sizes': [[0.8, 0.6, 1.73]],
'anchor_rotations': [0, 1.57],
'anchor_bottom_heights': [-0.6],
'align_center': False,
'feature_map_stride': 8,
'matched_threshold': 0.5,
'unmatched_threshold': 0.35
},
{
'class_name': 'Cyclist',
'anchor_sizes': [[1.76, 0.6, 1.73]],
'anchor_rotations': [0, 1.57],
'anchor_bottom_heights': [-0.6],
'align_center': False,
'feature_map_stride': 8,
'matched_threshold': 0.5,
'unmatched_threshold': 0.35
}
]
TARGET_ASSIGNER_CONFIG:
NAME: AxisAlignedTargetAssigner
POS_FRACTION: -1.0
SAMPLE_SIZE: 512
NORM_BY_NUM_EXAMPLES: False
MATCH_HEIGHT: False
BOX_CODER: ResidualCoder
LOSS_CONFIG:
LOSS_WEIGHTS: {
'cls_weight': 1.0,
'loc_weight': 2.0,
'dir_weight': 0.2,
'code_weights': [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
}
PFE:
NAME: VoxelSetAbstraction
POINT_SOURCE: raw_points
NUM_KEYPOINTS: 2048
NUM_OUTPUT_FEATURES: 90
SAMPLE_METHOD: SPC
SPC_SAMPLING:
NUM_SECTORS: 6
SAMPLE_RADIUS_WITH_ROI: 1.6
FEATURES_SOURCE: ['bev', 'x_conv3', 'x_conv4', 'raw_points']
SA_LAYER:
raw_points:
NAME: VectorPoolAggregationModuleMSG
NUM_GROUPS: 2
LOCAL_AGGREGATION_TYPE: local_interpolation
NUM_REDUCED_CHANNELS: 1
NUM_CHANNELS_OF_LOCAL_AGGREGATION: 32
MSG_POST_MLPS: [ 32 ]
FILTER_NEIGHBOR_WITH_ROI: True
RADIUS_OF_NEIGHBOR_WITH_ROI: 2.4
GROUP_CFG_0:
NUM_LOCAL_VOXEL: [ 2, 2, 2 ]
MAX_NEIGHBOR_DISTANCE: 0.2
NEIGHBOR_NSAMPLE: -1
POST_MLPS: [ 32, 32 ]
GROUP_CFG_1:
NUM_LOCAL_VOXEL: [ 3, 3, 3 ]
MAX_NEIGHBOR_DISTANCE: 0.4
NEIGHBOR_NSAMPLE: -1
POST_MLPS: [ 32, 32 ]
x_conv3:
DOWNSAMPLE_FACTOR: 4
INPUT_CHANNELS: 64
NAME: VectorPoolAggregationModuleMSG
NUM_GROUPS: 2
LOCAL_AGGREGATION_TYPE: local_interpolation
NUM_REDUCED_CHANNELS: 32
NUM_CHANNELS_OF_LOCAL_AGGREGATION: 32
MSG_POST_MLPS: [128]
FILTER_NEIGHBOR_WITH_ROI: True
RADIUS_OF_NEIGHBOR_WITH_ROI: 4.0
GROUP_CFG_0:
NUM_LOCAL_VOXEL: [3, 3, 3]
MAX_NEIGHBOR_DISTANCE: 1.2
NEIGHBOR_NSAMPLE: -1
POST_MLPS: [64, 64]
GROUP_CFG_1:
NUM_LOCAL_VOXEL: [ 3, 3, 3 ]
MAX_NEIGHBOR_DISTANCE: 2.4
NEIGHBOR_NSAMPLE: -1
POST_MLPS: [ 64, 64 ]
x_conv4:
DOWNSAMPLE_FACTOR: 8
INPUT_CHANNELS: 64
NAME: VectorPoolAggregationModuleMSG
NUM_GROUPS: 2
LOCAL_AGGREGATION_TYPE: local_interpolation
NUM_REDUCED_CHANNELS: 32
NUM_CHANNELS_OF_LOCAL_AGGREGATION: 32
MSG_POST_MLPS: [ 128 ]
FILTER_NEIGHBOR_WITH_ROI: True
RADIUS_OF_NEIGHBOR_WITH_ROI: 6.4
GROUP_CFG_0:
NUM_LOCAL_VOXEL: [ 3, 3, 3 ]
MAX_NEIGHBOR_DISTANCE: 2.4
NEIGHBOR_NSAMPLE: -1
POST_MLPS: [ 64, 64 ]
GROUP_CFG_1:
NUM_LOCAL_VOXEL: [ 3, 3, 3 ]
MAX_NEIGHBOR_DISTANCE: 4.8
NEIGHBOR_NSAMPLE: -1
POST_MLPS: [ 64, 64 ]
POINT_HEAD:
NAME: PointHeadSimple
CLS_FC: [256, 256]
CLASS_AGNOSTIC: True
USE_POINT_FEATURES_BEFORE_FUSION: True
TARGET_CONFIG:
GT_EXTRA_WIDTH: [0.2, 0.2, 0.2]
LOSS_CONFIG:
LOSS_REG: smooth-l1
LOSS_WEIGHTS: {
'point_cls_weight': 1.0,
}
ROI_HEAD:
NAME: PVRCNNHead
CLASS_AGNOSTIC: True
SHARED_FC: [256, 256]
CLS_FC: [256, 256]
REG_FC: [256, 256]
DP_RATIO: 0.3
NMS_CONFIG:
TRAIN:
NMS_TYPE: nms_gpu
MULTI_CLASSES_NMS: False
NMS_PRE_MAXSIZE: 9000
NMS_POST_MAXSIZE: 512
NMS_THRESH: 0.8
TEST:
NMS_TYPE: nms_gpu
MULTI_CLASSES_NMS: False
NMS_PRE_MAXSIZE: 1024
NMS_POST_MAXSIZE: 100
NMS_THRESH: 0.7
SCORE_THRESH: 0.1
ROI_GRID_POOL:
GRID_SIZE: 6
NAME: VectorPoolAggregationModuleMSG
NUM_GROUPS: 2
LOCAL_AGGREGATION_TYPE: voxel_random_choice
NUM_REDUCED_CHANNELS: 30
NUM_CHANNELS_OF_LOCAL_AGGREGATION: 32
MSG_POST_MLPS: [ 128 ]
GROUP_CFG_0:
NUM_LOCAL_VOXEL: [ 3, 3, 3 ]
MAX_NEIGHBOR_DISTANCE: 0.8
NEIGHBOR_NSAMPLE: 32
POST_MLPS: [ 64, 64 ]
GROUP_CFG_1:
NUM_LOCAL_VOXEL: [ 3, 3, 3 ]
MAX_NEIGHBOR_DISTANCE: 1.6
NEIGHBOR_NSAMPLE: 32
POST_MLPS: [ 64, 64 ]
TARGET_CONFIG:
BOX_CODER: ResidualCoder
ROI_PER_IMAGE: 128
FG_RATIO: 0.5
SAMPLE_ROI_BY_EACH_CLASS: True
CLS_SCORE_TYPE: roi_iou
CLS_FG_THRESH: 0.75
CLS_BG_THRESH: 0.25
CLS_BG_THRESH_LO: 0.1
HARD_BG_RATIO: 0.8
REG_FG_THRESH: 0.55
LOSS_CONFIG:
CLS_LOSS: BinaryCrossEntropy
REG_LOSS: smooth-l1
CORNER_LOSS_REGULARIZATION: True
LOSS_WEIGHTS: {
'rcnn_cls_weight': 1.0,
'rcnn_reg_weight': 1.0,
'rcnn_corner_weight': 1.0,
'code_weights': [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
}
POST_PROCESSING:
RECALL_THRESH_LIST: [0.3, 0.5, 0.7]
SCORE_THRESH: 0.4
OUTPUT_RAW_SCORE: False
EVAL_METRIC: kitti
NMS_CONFIG:
MULTI_CLASSES_NMS: False
NMS_TYPE: nms_gpu
NMS_THRESH: 0.1
NMS_PRE_MAXSIZE: 4096
NMS_POST_MAXSIZE: 500
OPTIMIZATION:
BATCH_SIZE_PER_GPU: 4
NUM_EPOCHS: 80
OPTIMIZER: adam_onecycle
LR: 0.01
WEIGHT_DECAY: 0.001
MOMENTUM: 0.9
MOMS: [0.95, 0.85]
PCT_START: 0.4
DIV_FACTOR: 10
DECAY_STEP_LIST: [35, 45]
LR_DECAY: 0.1
LR_CLIP: 0.0000001
LR_WARMUP: False
WARMUP_EPOCH: 1
GRAD_NORM_CLIP: 10
3、sectorized proposal-centric keypoint sampling strategy
4、VectorPool aggregation
5、推理和结果展示
6、消融实验
待续
|