如果有可以代替人类干活的机器人的话,那人类将会轻松不少,现在的发展显然已经开始向这领域在进攻。应用微型机器人技术,可以使各种各样的航天测量变得更为轻巧,磁带录音机之类的家用电器也会变得更加小巧和多用,电视屏幕可以做得既大又薄,其上各点的光亮度,可以用微型机器人自动控制。微型机器人也将使机械学发生一场革命。微型和超微型机器人的应用领域非常广阔,它可以用于航海、农业、通信、航空航天、家庭和医疗等方面。 例如:扔下成千上万个微型机器人去咀嚼轮船底部的贝类和苔藓,能节省航行能源。将成千上万个微型机器人撒在土豆地内,让它们去咬死害虫,使土豆有好收成。飞行微型机器人载着湿度仪和红外传感器在田野上飞翔,当发现农田有干旱现象时,便降落在灌溉系统的阀门上,将干旱信息传输给传感器,打开阀门,人类无法到达的地方去观察环境,存储或传输图像。当地下电缆断了以后,让成干上万个微型机器人沿着电缆爬行,爬到断头时,便让双手搭在前端断头上,于是微型机器人便成为连接导线,永久留在电缆上。
微型机器人可以清洁、修理空间望远镜,检查宇宙飞船热屏蔽罩,给飞机机罩除冰。如果将大量的飞行微型机器人部署在其他星球上,机器人则可以发回各种所需的信息。 每天晚上可以放出微型机器人在商店和仓库附近放哨,防止盗窃者进人。微型机器人还可以在住房隐蔽处除尘,进入家用电器内部检查和维护。 微型机器人能力的评价标准有:智能,指感觉和感知,包括记忆运算、比较、鉴别、判断、决策、学习和逻辑推理等;机能,指变通性、通用性或空间占有性等;物理能,指力、速度、连续运行能力、可靠性、联用性、寿命等。因此,可以说微型机器人是具有生物功能的空间三维机器。
机器人导航是人工智能领域的经典问题,人工智能学家们设计了一系列算法,希望赋予无人车、机器人空间认知能力,让无人车、机器人能在陌生环境中认路,确定自己的方位。 “无人机、机器人导航需要大量昂贵的传感器,行进过程中还需要庞大的计算资源,即便如此依然无法保证能够应付动态环境中的突发事件。但是,小鼠仅靠几粒花生米就可以上蹿下跳,逃过天敌们的围追堵截。怎样让无人车、机器人像小鼠一样适应动态环境呢?过去半个多世纪,脑科学领域的研究人员发现哺乳动物的导航是由多种编码空间信息的神经细胞协作完成的。 研究人员先是在哺乳动物大脑的海马体中发现了一组能编码位置的“位置细胞”,该细胞可以记忆窝和食物源等重要位置。而后,又在海马体的附近发现了一套负责空间认知的神经回路——内嗅皮层,其中的“栅格细胞”能够整合另一组具有表征运动方向功能的“头朝向细胞”,来编码自己访问过的位置、方向和距离。这一动态机制能够整合多种感知信息,使无人车、机器人实时构建一套认知地图、计算自身方位和运动的最优概率成为可能,并最终实现在外界定位信息缺失的情况下的自主导航。 类脑智能或成人工智能的另一选择。目前的人工智能研究,以深度学习为主,以计算能力为动力,从大数据中进行学习,完成语音识别、图像理解、文字识别等任务。
类脑智能为人工智能研究提供了新的可能。类脑智能就是要根据大脑运行的内在神经机制,来启发新的人工智能算法和系统。“类脑智能是推动人工智能突破现阶段许多瓶颈的可行途径。 综上所述,一般情况下,面对陌生环境,无人车、机器人需要利用激光雷达等传感器构建周边环境地图。如果无人车、机器人需要进一步完成送快递等任务,就可以根据已经构建的地图规划出一条从起点到终点的路径,然后再沿着规划的轨迹运动,并不断地重新定位、规划运动路线、实时检测避障,以保证顺利到达终点。但是,这些看似合理的方法的效率远比不上小鼠等哺乳动物的随机应变。
|