IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> mmaction工程解读-timesformer模型架构 -> 正文阅读

[人工智能]mmaction工程解读-timesformer模型架构

Recognizer3D(
  (backbone): TimeSformer(
    (patch_embed): PatchEmbed(
      (projection): Conv2d(3, 768, kernel_size=(16, 16), stride=(16, 16))
    )
    (drop_after_pos): Dropout(p=0.0, inplace=False)
    (drop_after_time): Dropout(p=0.0, inplace=False)
    (norm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
    (transformer_layers): TransformerLayerSequence(
      (layers): ModuleList(
        (0): BaseTransformerLayer(
          (attentions): ModuleList(
            (0): DividedTemporalAttentionWithNorm(
              (norm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
              (attn): MultiheadAttention(
                (out_proj): _LinearWithBias(in_features=768, out_features=768, bias=True)
              )
              (proj_drop): Dropout(p=0.0, inplace=False)
              (dropout_layer): DropPath()
              (temporal_fc): Linear(in_features=768, out_features=768, bias=True)
            )
            (1): DividedSpatialAttentionWithNorm(
              (norm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
              (attn): MultiheadAttention(
                (out_proj): _LinearWithBias(in_features=768, out_features=768, bias=True)
              )
              (proj_drop): Dropout(p=0.0, inplace=False)
              (dropout_layer): DropPath()
            )
          )
          (ffns): ModuleList(
            (0): FFNWithNorm(
              (activate): GELU()
              (layers): Sequential(
                (0): Sequential(
                  (0): Linear(in_features=768, out_features=3072, bias=True)
                  (1): GELU()
                  (2): Dropout(p=0.0, inplace=False)
                )
                (1): Linear(in_features=3072, out_features=768, bias=True)
                (2): Dropout(p=0.0, inplace=False)
              )
              (dropout_layer): DropPath()
              (norm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
            )
          )
          (norms): ModuleList()
        )
        (1): BaseTransformerLayer(
          (attentions): ModuleList(
            (0): DividedTemporalAttentionWithNorm(
              (norm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
              (attn): MultiheadAttention(
                (out_proj): _LinearWithBias(in_features=768, out_features=768, bias=True)
              )
              (proj_drop): Dropout(p=0.0, inplace=False)
              (dropout_layer): DropPath()
              (temporal_fc): Linear(in_features=768, out_features=768, bias=True)
            )
            (1): DividedSpatialAttentionWithNorm(
              (norm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
              (attn): MultiheadAttention(
                (out_proj): _LinearWithBias(in_features=768, out_features=768, bias=True)
              )
              (proj_drop): Dropout(p=0.0, inplace=False)
              (dropout_layer): DropPath()
            )
          )
          (ffns): ModuleList(
            (0): FFNWithNorm(
              (activate): GELU()
              (layers): Sequential(
                (0): Sequential(
                  (0): Linear(in_features=768, out_features=3072, bias=True)
                  (1): GELU()
                  (2): Dropout(p=0.0, inplace=False)
                )
                (1): Linear(in_features=3072, out_features=768, bias=True)
                (2): Dropout(p=0.0, inplace=False)
              )
              (dropout_layer): DropPath()
              (norm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
            )
          )
          (norms): ModuleList()
        )
        (2): BaseTransformerLayer(
          (attentions): ModuleList(
            (0): DividedTemporalAttentionWithNorm(
              (norm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
              (attn): MultiheadAttention(
                (out_proj): _LinearWithBias(in_features=768, out_features=768, bias=True)
              )
              (proj_drop): Dropout(p=0.0, inplace=False)
              (dropout_layer): DropPath()
              (temporal_fc): Linear(in_features=768, out_features=768, bias=True)
            )
            (1): DividedSpatialAttentionWithNorm(
              (norm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
              (attn): MultiheadAttention(
                (out_proj): _LinearWithBias(in_features=768, out_features=768, bias=True)
              )
              (proj_drop): Dropout(p=0.0, inplace=False)
              (dropout_layer): DropPath()
            )
          )
          (ffns): ModuleList(
            (0): FFNWithNorm(
              (activate): GELU()
              (layers): Sequential(
                (0): Sequential(
                  (0): Linear(in_features=768, out_features=3072, bias=True)
                  (1): GELU()
                  (2): Dropout(p=0.0, inplace=False)
                )
                (1): Linear(in_features=3072, out_features=768, bias=True)
                (2): Dropout(p=0.0, inplace=False)
              )
              (dropout_layer): DropPath()
              (norm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
            )
          )
          (norms): ModuleList()
        )
        (3): BaseTransformerLayer(
          (attentions): ModuleList(
            (0): DividedTemporalAttentionWithNorm(
              (norm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
              (attn): MultiheadAttention(
                (out_proj): _LinearWithBias(in_features=768, out_features=768, bias=True)
              )
              (proj_drop): Dropout(p=0.0, inplace=False)
              (dropout_layer): DropPath()
              (temporal_fc): Linear(in_features=768, out_features=768, bias=True)
            )
            (1): DividedSpatialAttentionWithNorm(
              (norm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
              (attn): MultiheadAttention(
                (out_proj): _LinearWithBias(in_features=768, out_features=768, bias=True)
              )
              (proj_drop): Dropout(p=0.0, inplace=False)
              (dropout_layer): DropPath()
            )
          )
          (ffns): ModuleList(
            (0): FFNWithNorm(
              (activate): GELU()
              (layers): Sequential(
                (0): Sequential(
                  (0): Linear(in_features=768, out_features=3072, bias=True)
                  (1): GELU()
                  (2): Dropout(p=0.0, inplace=False)
                )
                (1): Linear(in_features=3072, out_features=768, bias=True)
                (2): Dropout(p=0.0, inplace=False)
              )
              (dropout_layer): DropPath()
              (norm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
            )
          )
          (norms): ModuleList()
        )
        (4): BaseTransformerLayer(
          (attentions): ModuleList(
            (0): DividedTemporalAttentionWithNorm(
              (norm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
              (attn): MultiheadAttention(
                (out_proj): _LinearWithBias(in_features=768, out_features=768, bias=True)
              )
              (proj_drop): Dropout(p=0.0, inplace=False)
              (dropout_layer): DropPath()
              (temporal_fc): Linear(in_features=768, out_features=768, bias=True)
            )
            (1): DividedSpatialAttentionWithNorm(
              (norm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
              (attn): MultiheadAttention(
                (out_proj): _LinearWithBias(in_features=768, out_features=768, bias=True)
              )
              (proj_drop): Dropout(p=0.0, inplace=False)
              (dropout_layer): DropPath()
            )
          )
          (ffns): ModuleList(
            (0): FFNWithNorm(
              (activate): GELU()
              (layers): Sequential(
                (0): Sequential(
                  (0): Linear(in_features=768, out_features=3072, bias=True)
                  (1): GELU()
                  (2): Dropout(p=0.0, inplace=False)
                )
                (1): Linear(in_features=3072, out_features=768, bias=True)
                (2): Dropout(p=0.0, inplace=False)
              )
              (dropout_layer): DropPath()
              (norm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
            )
          )
          (norms): ModuleList()
        )
        (5): BaseTransformerLayer(
          (attentions): ModuleList(
            (0): DividedTemporalAttentionWithNorm(
              (norm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
              (attn): MultiheadAttention(
                (out_proj): _LinearWithBias(in_features=768, out_features=768, bias=True)
              )
              (proj_drop): Dropout(p=0.0, inplace=False)
              (dropout_layer): DropPath()
              (temporal_fc): Linear(in_features=768, out_features=768, bias=True)
            )
            (1): DividedSpatialAttentionWithNorm(
              (norm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
              (attn): MultiheadAttention(
                (out_proj): _LinearWithBias(in_features=768, out_features=768, bias=True)
              )
              (proj_drop): Dropout(p=0.0, inplace=False)
              (dropout_layer): DropPath()
            )
          )
          (ffns): ModuleList(
            (0): FFNWithNorm(
              (activate): GELU()
              (layers): Sequential(
                (0): Sequential(
                  (0): Linear(in_features=768, out_features=3072, bias=True)
                  (1): GELU()
                  (2): Dropout(p=0.0, inplace=False)
                )
                (1): Linear(in_features=3072, out_features=768, bias=True)
                (2): Dropout(p=0.0, inplace=False)
              )
              (dropout_layer): DropPath()
              (norm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
            )
          )
          (norms): ModuleList()
        )
        (6): BaseTransformerLayer(
          (attentions): ModuleList(
            (0): DividedTemporalAttentionWithNorm(
              (norm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
              (attn): MultiheadAttention(
                (out_proj): _LinearWithBias(in_features=768, out_features=768, bias=True)
              )
              (proj_drop): Dropout(p=0.0, inplace=False)
              (dropout_layer): DropPath()
              (temporal_fc): Linear(in_features=768, out_features=768, bias=True)
            )
            (1): DividedSpatialAttentionWithNorm(
              (norm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
              (attn): MultiheadAttention(
                (out_proj): _LinearWithBias(in_features=768, out_features=768, bias=True)
              )
              (proj_drop): Dropout(p=0.0, inplace=False)
              (dropout_layer): DropPath()
            )
          )
          (ffns): ModuleList(
            (0): FFNWithNorm(
              (activate): GELU()
              (layers): Sequential(
                (0): Sequential(
                  (0): Linear(in_features=768, out_features=3072, bias=True)
                  (1): GELU()
                  (2): Dropout(p=0.0, inplace=False)
                )
                (1): Linear(in_features=3072, out_features=768, bias=True)
                (2): Dropout(p=0.0, inplace=False)
              )
              (dropout_layer): DropPath()
              (norm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
            )
          )
          (norms): ModuleList()
        )
        (7): BaseTransformerLayer(
          (attentions): ModuleList(
            (0): DividedTemporalAttentionWithNorm(
              (norm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
              (attn): MultiheadAttention(
                (out_proj): _LinearWithBias(in_features=768, out_features=768, bias=True)
              )
              (proj_drop): Dropout(p=0.0, inplace=False)
              (dropout_layer): DropPath()
              (temporal_fc): Linear(in_features=768, out_features=768, bias=True)
            )
            (1): DividedSpatialAttentionWithNorm(
              (norm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
              (attn): MultiheadAttention(
                (out_proj): _LinearWithBias(in_features=768, out_features=768, bias=True)
              )
              (proj_drop): Dropout(p=0.0, inplace=False)
              (dropout_layer): DropPath()
            )
          )
          (ffns): ModuleList(
            (0): FFNWithNorm(
              (activate): GELU()
              (layers): Sequential(
                (0): Sequential(
                  (0): Linear(in_features=768, out_features=3072, bias=True)
                  (1): GELU()
                  (2): Dropout(p=0.0, inplace=False)
                )
                (1): Linear(in_features=3072, out_features=768, bias=True)
                (2): Dropout(p=0.0, inplace=False)
              )
              (dropout_layer): DropPath()
              (norm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
            )
          )
          (norms): ModuleList()
        )
        (8): BaseTransformerLayer(
          (attentions): ModuleList(
            (0): DividedTemporalAttentionWithNorm(
              (norm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
              (attn): MultiheadAttention(
                (out_proj): _LinearWithBias(in_features=768, out_features=768, bias=True)
              )
              (proj_drop): Dropout(p=0.0, inplace=False)
              (dropout_layer): DropPath()
              (temporal_fc): Linear(in_features=768, out_features=768, bias=True)
            )
            (1): DividedSpatialAttentionWithNorm(
              (norm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
              (attn): MultiheadAttention(
                (out_proj): _LinearWithBias(in_features=768, out_features=768, bias=True)
              )
              (proj_drop): Dropout(p=0.0, inplace=False)
              (dropout_layer): DropPath()
            )
          )
          (ffns): ModuleList(
            (0): FFNWithNorm(
              (activate): GELU()
              (layers): Sequential(
                (0): Sequential(
                  (0): Linear(in_features=768, out_features=3072, bias=True)
                  (1): GELU()
                  (2): Dropout(p=0.0, inplace=False)
                )
                (1): Linear(in_features=3072, out_features=768, bias=True)
                (2): Dropout(p=0.0, inplace=False)
              )
              (dropout_layer): DropPath()
              (norm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
            )
          )
          (norms): ModuleList()
        )
        (9): BaseTransformerLayer(
          (attentions): ModuleList(
            (0): DividedTemporalAttentionWithNorm(
              (norm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
              (attn): MultiheadAttention(
                (out_proj): _LinearWithBias(in_features=768, out_features=768, bias=True)
              )
              (proj_drop): Dropout(p=0.0, inplace=False)
              (dropout_layer): DropPath()
              (temporal_fc): Linear(in_features=768, out_features=768, bias=True)
            )
            (1): DividedSpatialAttentionWithNorm(
              (norm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
              (attn): MultiheadAttention(
                (out_proj): _LinearWithBias(in_features=768, out_features=768, bias=True)
              )
              (proj_drop): Dropout(p=0.0, inplace=False)
              (dropout_layer): DropPath()
            )
          )
          (ffns): ModuleList(
            (0): FFNWithNorm(
              (activate): GELU()
              (layers): Sequential(
                (0): Sequential(
                  (0): Linear(in_features=768, out_features=3072, bias=True)
                  (1): GELU()
                  (2): Dropout(p=0.0, inplace=False)
                )
                (1): Linear(in_features=3072, out_features=768, bias=True)
                (2): Dropout(p=0.0, inplace=False)
              )
              (dropout_layer): DropPath()
              (norm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
            )
          )
          (norms): ModuleList()
        )
        (10): BaseTransformerLayer(
          (attentions): ModuleList(
            (0): DividedTemporalAttentionWithNorm(
              (norm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
              (attn): MultiheadAttention(
                (out_proj): _LinearWithBias(in_features=768, out_features=768, bias=True)
              )
              (proj_drop): Dropout(p=0.0, inplace=False)
              (dropout_layer): DropPath()
              (temporal_fc): Linear(in_features=768, out_features=768, bias=True)
            )
            (1): DividedSpatialAttentionWithNorm(
              (norm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
              (attn): MultiheadAttention(
                (out_proj): _LinearWithBias(in_features=768, out_features=768, bias=True)
              )
              (proj_drop): Dropout(p=0.0, inplace=False)
              (dropout_layer): DropPath()
            )
          )
          (ffns): ModuleList(
            (0): FFNWithNorm(
              (activate): GELU()
              (layers): Sequential(
                (0): Sequential(
                  (0): Linear(in_features=768, out_features=3072, bias=True)
                  (1): GELU()
                  (2): Dropout(p=0.0, inplace=False)
                )
                (1): Linear(in_features=3072, out_features=768, bias=True)
                (2): Dropout(p=0.0, inplace=False)
              )
              (dropout_layer): DropPath()
              (norm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
            )
          )
          (norms): ModuleList()
        )
        (11): BaseTransformerLayer(
          (attentions): ModuleList(
            (0): DividedTemporalAttentionWithNorm(
              (norm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
              (attn): MultiheadAttention(
                (out_proj): _LinearWithBias(in_features=768, out_features=768, bias=True)
              )
              (proj_drop): Dropout(p=0.0, inplace=False)
              (dropout_layer): DropPath()
              (temporal_fc): Linear(in_features=768, out_features=768, bias=True)
            )
            (1): DividedSpatialAttentionWithNorm(
              (norm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
              (attn): MultiheadAttention(
                (out_proj): _LinearWithBias(in_features=768, out_features=768, bias=True)
              )
              (proj_drop): Dropout(p=0.0, inplace=False)
              (dropout_layer): DropPath()
            )
          )
          (ffns): ModuleList(
            (0): FFNWithNorm(
              (activate): GELU()
              (layers): Sequential(
                (0): Sequential(
                  (0): Linear(in_features=768, out_features=3072, bias=True)
                  (1): GELU()
                  (2): Dropout(p=0.0, inplace=False)
                )
                (1): Linear(in_features=3072, out_features=768, bias=True)
                (2): Dropout(p=0.0, inplace=False)
              )
              (dropout_layer): DropPath()
              (norm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
            )
          )
          (norms): ModuleList()
        )
      )
    )
  )
  (cls_head): TimeSformerHead(
    (loss_cls): CrossEntropyLoss()
    (fc_cls): Linear(in_features=768, out_features=400, bias=True)
  )
)

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-04-24 09:26:48  更:2022-04-24 09:30:59 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/26 10:00:14-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码