IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> sklearn库中逻辑回归如何实现多分类 -> 正文阅读

[人工智能]sklearn库中逻辑回归如何实现多分类

对于逻辑回归算法主要是用回归的算法解决分类的问题,它只能解决二分类的问题,经过改造便可以进行多分类问题,主要的改造方式有两大类:
(1)OVR/A(One VS Rest/ALL)
(2)OVO(One VS One)

(1)对于OVR的改造方式,主要是指将多个分类结果(假设为n)分成是其中一种分类结果的和(其他),这样便可以有n种分类的模型进行训练,最终选择得分最高的的(预测率最高的的)便为分类结果即可。它所训练的时间是原来分类时间的n倍。sklearn库默认就是OVR

(2)对于OVO的方式,主要是将n个数据分类结果任意两个进行组合,然后对其单独进行训练和预测,最终在所有的预测种类中比较其赢数最高的即为分类结果,这样的分类方式最终将训练分为n(n-1)/2个模型,计算时间相对较长,不过这样的方式每次训练各个种类之间不混淆也不影响,因此比较准确。

有一个疑问:n是如何确定的?

from sklearn.linear_model import LogisticRegression
classifier = LogisticRegression(random_state=0)  #建立逻辑回归模型

其中LogisticRegressiom()底层代码:
在这里插入图片描述

1301行和1334行就是求出n值,即类别的个数,np.unique()作用是将y去重并按元素大小返回一个新的无元素重复的元组或列表。

self.classes_ = np.unique(y) #1301行
n_classes = len(self.classes_)#1334行

自己简单实现,以鸢尾花数据集为例,是一个根据花的属性给花进行分类的数据集,共有3类150条记录,每类各50个数据。

import numpy as np  #导入numpy库,简写为np
import matplotlib.pyplot as plt  #导入matplotlib库,简写为plt
from sklearn.datasets import load_iris

y = load_iris().target
print(type(y))  #y有150个

classes_ = np.unique(y)
print(classes_)  #一个新的无元素重复的元组 [0 1 2 ]
n_classes = len(classes_)
print(n_classes)  #类别的个数 3

结果如下:

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2]
[0 1 2]
3

引用:
https://zhuanlan.zhihu.com/p/453182477

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-04-26 11:41:49  更:2022-04-26 11:43:33 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/6 22:46:55-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码