IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> Yolov5如何更换激活函数? -> 正文阅读

[人工智能]Yolov5如何更换激活函数?

Yolo v5如何更换激活函数?



1.1 激活函数更换方法🍀

(1)找到activations.py,激活函数代码写在了activations.py 文件里.
在这里插入图片描述

打开后就可以看到很多种写好的激活函数

在这里插入图片描述

(2)如果要进行修改可以去common.py文件里修改

在这里插入图片描述

这里很多卷积组都涉及到了激活函数(似乎就这俩涉及到了),所以改的时候要全面。

在这里插入图片描述

在这里插入图片描述

下面放上一些效果比较好的激活函数及图像

1.2 激活函数介绍💡(持续更新中,以后会放上最新paper的复现结果)

1.2.1 SiLU

SiLU优点:

  1. 无上界(避免过拟合)
  2. 有下界(产生更强的正则化效果)
  3. 平滑(处处可导 更容易训练)
  4. x<0具有非单调性(对分布有重要意义 这点也是Swish和ReLU的最大区别)
# SiLU https://arxiv.org/pdf/1606.08415.pdf ----------------------------------------------------------------------------
class SiLU(nn.Module):  # export-friendly version of nn.SiLU()
    @staticmethod
    def forward(x):
        return x * torch.sigmoid(x)

在这里插入图片描述

1.2.2 Hardswish

class Hardswish(nn.Module):  # export-friendly version of nn.Hardswish()
    @staticmethod
    def forward(x):
        # return x * F.hardsigmoid(x)  # for TorchScript and CoreML
        return x * F.hardtanh(x + 3, 0.0, 6.0) / 6.0  # for TorchScript, CoreML and ONNX

在这里插入图片描述

1.2.3 Mish

Mish特点:

1.无上界,非饱和,避免了因饱和而导致梯度为0(梯度消失/梯度爆炸),进而导致训练速度大大下降;
2.有下界,在负半轴有较小的权重,可以防止ReLU函数出现的神经元坏死现象;同时可以产生更强的正则化效果;
3.自身本就具有自正则化效果(公式可以推导),可以使梯度和函数本身更加平滑(Smooth),且是每个点几乎都是平滑的,这就更容易优化而且也可以更好的泛化。随着网络越深,信息可以更深入的流动。
4.x<0,保留了少量的负信息,避免了ReLU的Dying ReLU现象,这有利于更好的表达和信息流动。
5.连续可微,避免奇异点
6.非单调

# Mish https://github.com/digantamisra98/Mish --------------------------------------------------------------------------
class Mish(nn.Module):
    @staticmethod
    def forward(x):
        return x * F.softplus(x).tanh()

在这里插入图片描述

1.2.4 MemoryEfficientMish

一种高效的Mish激活函数 不采用自动求导(自己写前向传播和反向传播) 更高效,Mish的升级版

class MemoryEfficientMish(nn.Module):
    class F(torch.autograd.Function):
        @staticmethod
        def forward(ctx, x):
            ctx.save_for_backward(x)
            return x.mul(torch.tanh(F.softplus(x)))  # x * tanh(ln(1 + exp(x)))

        @staticmethod
        def backward(ctx, grad_output):
            x = ctx.saved_tensors[0]
            sx = torch.sigmoid(x)
            fx = F.softplus(x).tanh()
            return grad_output * (fx + x * sx * (1 - fx * fx))

    def forward(self, x):
        return self.F.apply(x)

1.2.5 FReLU

FReLU(Funnel ReLU 漏斗ReLU)非线性激活函数,在只增加一点点的计算负担的情况下,将ReLU和PReLU扩展成2D激活函数。具体的做法是将max()函数内的条件部分(原先ReLU的x<0部分)换成了2D的漏斗条件(代码是通过DepthWise Separable Conv + BN 实现的),解决了激活函数中的空间不敏感问题,使规则(普通)的卷积也具备捕获复杂的视觉布局能力,使模型具备像素级建模的能力。

# FReLU https://arxiv.org/abs/2007.11824 -------------------------------------------------------------------------------
class FReLU(nn.Module):
    def __init__(self, c1, k=3):  # ch_in, kernel
        super().__init__()
        self.conv = nn.Conv2d(c1, c1, k, 1, 1, groups=c1, bias=False)
        self.bn = nn.BatchNorm2d(c1)

    def forward(self, x):
        return torch.max(x, self.bn(self.conv(x)))

在这里插入图片描述

在这里插入图片描述

1.2.6 AconC

这是2021年新出的一个激活函数,先从ReLU函数出发,采用Smoth maximum近似平滑公式证明了Swish就是ReLU函数的近似平滑表示,这也算提出一种新颖的Swish函数解释(Swish不再是一个黑盒)。之后进一步分析ReLU的一般形式Maxout系列激活函数,再次利用Smoth maximum将Maxout系列扩展得到简单且有效的ACON系列激活函数:ACON-A、ACON-B、ACON-C。最终提出meta-ACON,动态的学习(自适应)激活函数的线性/非线性,显著提高了表现。
细节请看这位大佬的文章

class AconC(nn.Module):
    r""" ACON activation (activate or not).
    AconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is a learnable parameter
    according to "Activate or Not: Learning Customized Activation" <https://arxiv.org/pdf/2009.04759.pdf>.
    """

    def __init__(self, c1):
        super().__init__()
        self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1))
        self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1))
        self.beta = nn.Parameter(torch.ones(1, c1, 1, 1))

    def forward(self, x):
        dpx = (self.p1 - self.p2) * x
        return dpx * torch.sigmoid(self.beta * dpx) + self.p2 * x

在这里插入图片描述

1.2.7 MetaAconC

上面那个的不同版本

class MetaAconC(nn.Module):
    r""" ACON activation (activate or not).
    MetaAconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is generated by a small network
    according to "Activate or Not: Learning Customized Activation" <https://arxiv.org/pdf/2009.04759.pdf>.
    """

    def __init__(self, c1, k=1, s=1, r=16):  # ch_in, kernel, stride, r
        super().__init__()
        c2 = max(r, c1 // r)
        self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1))
        self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1))
        self.fc1 = nn.Conv2d(c1, c2, k, s, bias=True)
        self.fc2 = nn.Conv2d(c2, c1, k, s, bias=True)
        # self.bn1 = nn.BatchNorm2d(c2)
        # self.bn2 = nn.BatchNorm2d(c1)

    def forward(self, x):
        y = x.mean(dim=2, keepdims=True).mean(dim=3, keepdims=True)
        # batch-size 1 bug/instabilities https://github.com/ultralytics/yolov5/issues/2891
        # beta = torch.sigmoid(self.bn2(self.fc2(self.bn1(self.fc1(y)))))  # bug/unstable
        beta = torch.sigmoid(self.fc2(self.fc1(y)))  # bug patch BN layers removed
        dpx = (self.p1 - self.p2) * x
        return dpx * torch.sigmoid(beta * dpx) + self.p2 * x

最后再放一张常见激活函数的图
在这里插入图片描述

前沿paper的激活函数复现 持续更新中。。。。

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-04-27 11:19:34  更:2022-04-27 11:20:26 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/26 10:18:11-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码