IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> R语言glmnet包lasso回归中分类变量的处理 -> 正文阅读

[人工智能]R语言glmnet包lasso回归中分类变量的处理

我们在既往文章《手把手教你使用R语言做LASSO 回归》中介绍了glmnet包进行lasso回归,后台不少粉丝发信息向我问到分类变量处理的问题,我后面查了一下资料之前文章分类变量没有处理,非常抱歉。现在来重新聊一聊分类变量的处理。
我们导入glmnet包的时候可以看到,还需要导入一个Matrix包,说明这个矩阵包很重要
在这里插入图片描述
按照glmnet包的原文如下:
在这里插入图片描述
就是告诉我们,除了Cox Model外,其他的表达都支持矩阵形式,在Cox Model的介绍中,
函数样式为
在这里插入图片描述
在这里插入图片描述
说明我们应该把其他变量变为矩阵的形式。这样说得不是很明白,下面我们来举个例子说明,继续使用我们的乳腺癌数据(公众号回复:乳腺癌,可以获得数据)我们先导入数据和R包

library(glmnet)
library(foreign)
library("survival")
bc <- read.spss("E:/r/Breast cancer survival agec.sav",
                use.value.labels=F, to.data.frame=T)
bc <- na.omit(bc)

在这里插入图片描述
我们先来看看数据:
age表示年龄,pathsize表示病理肿瘤大小(厘米),lnpos表示腋窝淋巴结阳性,histgrad表示病理组织学等级,er表示雌激素受体状态,pr表示孕激素受体状态,status结局事件是否死亡,pathscat表示病理肿瘤大小类别(分组变量),ln_yesno表示是否有淋巴结肿大,time是生存时间,后面的agec是我们自己设定的,不用管它。
在这里插入图片描述
接下来删除缺失变量和把分类变量转成因子

bc$er<-as.factor(bc$er)
bc$pr<-as.factor(bc$pr)
bc$ln_yesno<-as.factor(bc$ln_yesno)
bc$histgrad<-as.factor(bc$histgrad)
bc$pathscat<-as.factor(bc$pathscat)

我们先来进行一个lasso的cox模型
glmnet包只能接受矩阵形式的数据,我们要分别进行转换
先把结局和时间提取出来

y<-bc$status
time<-bc$time

把id,结局变量,时间变量和一个乱七八糟的变量删掉

data1<-bc[,-c(1,8,11,12)]##把id,结局变量,时间变量和一个乱七八糟的变量删掉

把分类变量变成哑变量矩阵形式

model_mat <-model.matrix(~ +er+pr+ln_yesno+histgrad+pathscat-1,data1)###把分类变量变成哑变量矩阵形式

重新组成数据,也就是我们需要的x

x<-as.matrix(data.frame(age=data1$age,
                        pathsize=data1$pathsize,lnpos=data1$lnpos,model_mat))#重新组合成数据

在这里插入图片描述
弄好x就可以进行分析了,交叉验证最好设一个种子,

set.seed(123)
cv.fit <- cv.glmnet(x,Surv(time,y),family="cox", maxit = 1000)
plot(cv.fit)

在这里插入图片描述
maxit = 1000是让它迭代100次的意思,如果迭代没到1000次,可能会出现一次报错,这在官方说明里面也有讲到,但我用两种方法算了一遍,结果都是一样的,没有错
在这里插入图片描述
下图是官方说明
在这里插入图片描述
有兴趣的可以试一下这样算,结果也是一样的,但也要先设一个种子

set.seed(123)
cv.fit1<- cv.glmnet(x,Surv(time,y),family="cox", alpha=1,nfolds=10)
plot(cv.fit1)

在这里插入图片描述
取最小值,也都是一样的

cv.fit$lambda.min
cv.fit1$lambda.min

在这里插入图片描述

fit <- glmnet(x, Surv(time,y), family =  "cox", maxit = 1000)
plot(fit)

在这里插入图片描述
查看和提取系数

Coefficients <- coef(fit, s = cv.fit$lambda.min)
Active.Index <- which(Coefficients != 0)
Active.Coefficients <- Coefficients[Active.Index]
Active.Index
Active.Coefficients

在这里插入图片描述
上图标出了最后还剩下的变量(指的是它的位置)和变量的系数,自己对照x看一下就可以了。值得一提的是我看到官方的示例cox模型只取最小的lambda,这样大家就不用这么纠结了,还有一个是它没有预测功能,不能进行预测。
下面来进行Binomial Models,也就是我们的二分类变量模型,其实就是不用时间变量就行了,其他都差不多,继续拿乳腺癌数据演示,懒得找数据了,上一篇文章就是拿乳腺癌来模拟二分类数据的(当时没找到好的数据)。

fit1 = glmnet(x, y, family = "binomial")
plot(fit1, xvar = "dev", label = TRUE)

在这里插入图片描述
换成lambda

plot(fit1, xvar="lambda", label=TRUE)

在这里插入图片描述
其实到了这里基本和上一篇差不多了

set.seed(999)
cvfit=cv.glmnet(x,y, family = "binomial")
plot(cvfit)

在这里插入图片描述
求出最小值

cvfit$lambda.min#求出最小值
cvfit$lambda.1se#求出最小值一个标准误的λ值

在这里插入图片描述
求出系数

coef1<-coef(cvfit, s = "lambda.min")
coef2<-coef(cvfit, s = "lambda.1se")
coef1
coef2

在这里插入图片描述
在这里插入图片描述
有一个已经被怼没有了,只能选coef1了。OK,文章到这里已经演示完毕,觉得有用的话多多分享哟。

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-04-27 11:19:34  更:2022-04-27 11:21:26 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/26 8:18:24-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码