IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 基于PyTorch实现 Inception-ResNet-v1 -> 正文阅读

[人工智能]基于PyTorch实现 Inception-ResNet-v1

基于PyTorch实现 Inception-ResNet-V1

1、论文地址

Inception-ResNet and the Impact of Residual Connections on Learning

2 、网络框架

本文github链接
在这里插入图片描述

Stem

1.框架图
在这里插入图片描述
2.代码实现
因为要经常用,所以先定义一个3x3卷积,1x1卷积

class conv3x3(nn.Module):
    def __init__(self, in_planes, out_channels, stride=1, padding=0):
        super(conv3x3, self).__init__()
        self.conv3x3 = nn.Sequential(
             nn.Conv2d(in_planes, out_channels, kernel_size=3, stride=stride, padding=padding),#卷积核为3x3
             nn.BatchNorm2d(out_channels),#BN层,防止过拟合以及梯度爆炸
             nn.ReLU()#激活函数
        )
        
    def forward(self, input):
        return self.conv3x3(input)
        
class conv1x1(nn.Module):
    def __init__(self, in_planes, out_channels, stride=1, padding=0):
        super(conv1x1, self).__init__()
        self.conv1x1 = nn.Sequential(
             nn.Conv2d(in_planes, out_channels, kernel_size=1, stride=stride, padding=padding),#卷积核为1x1
             nn.BatchNorm2d(out_channels),
             nn.ReLU()
        )

    def forward(self, input):
        return self.conv1x1(input)

stride 2 代表步长为2
V 是TF中的padding="Valid"  == pytorch中的padding=0
V 是TF中的padding="Same"  == pytorch中的padding=1  with zero padding(0填充)
但是我复现的时候没完全按图示来,可能是前面那步出错了,导致后面特征图对不上了,自己改了一下padding,懒得改回来了
class StemV1(nn.Module):
    def __init__(self, in_planes):
        super(StemV1, self).__init__()

        self.conv1 = conv3x3(in_planes =in_planes,out_channels=32,stride=2, padding=0)
        self.conv2 = conv3x3(in_planes=32, out_channels=32,  stride=1, padding=0)
        self.conv3 = conv3x3(in_planes=32, out_channels=64, stride=1, padding=1)
        self.maxpool = nn.MaxPool2d(kernel_size=3,  stride=2, padding=0)
        self.conv4 = conv3x3(in_planes=64, out_channels=64,  stride=1, padding=1)
        self.conv5 = conv1x1(in_planes =64,out_channels=80,  stride=1, padding=0)
        self.conv6 = conv3x3(in_planes=80, out_channels=192, stride=1, padding=0)
        self.conv7 = conv3x3(in_planes=192, out_channels=256,  stride=2, padding=0)

    def forward(self, x):
        x = self.conv1(x)
        x = self.conv2(x)
        x = self.conv3(x)
        x = self.maxpool(x)
        x = self.conv4(x)
        x = self.conv5(x)
        x = self.conv6(x)
        x = self.conv7(x)

        return x

Inception_ResNet_A

1、框架图
在这里插入图片描述
2、代码实现

class Inception_ResNet_A(nn.Module):
    def __init__(self, input ):
        super(Inception_ResNet_A, self).__init__()
        self.conv1 = conv1x1(in_planes =input,out_channels=32,stride=1, padding=0)
        self.conv2 = conv3x3(in_planes=32, out_channels=32, stride=1, padding=1)
        self.line =  nn.Conv2d(96, 256, 1, stride=1, padding=0, bias=True)

        self.relu = nn.ReLU()

    def forward(self, x):

        c1 = self.conv1(x)
        # print("c1",c1.shape)
        c2 = self.conv1(x)
        # print("c2", c2.shape)
        c3 = self.conv1(x)
        # print("c3", c3.shape)
        c2_1 = self.conv2(c2)
        # print("c2_1", c2_1.shape)
        c3_1 = self.conv2(c3)
        # print("c3_1", c3_1.shape)
        c3_2 = self.conv2(c3_1)
        # print("c3_2", c3_2.shape)
        cat = torch.cat([c1, c2_1, c3_2],dim=1)#torch.Size([4, 96, 15, 15])
        # print("x",x.shape)

        line = self.line(cat)
        # print("line",line.shape)
        out =x+line
        out = self.relu(out)

        return out

Reduction_A

1、框架图
在这里插入图片描述

2、代码实现

class Reduction_A(nn.Module):
    def __init__(self, input,n=384,k=192,l=224,m=256):
        super(Reduction_A, self).__init__()
        self.maxpool = nn.MaxPool2d(kernel_size=3,  stride=2, padding=0)
        self.conv1 = conv3x3(in_planes=input, out_channels=n,stride=2,padding=0)
        self.conv2 = conv1x1(in_planes=input, out_channels=k,padding=1)
        self.conv3 = conv3x3(in_planes=k,  out_channels=l,padding=0)
        self.conv4 = conv3x3(in_planes=l,  out_channels=m,stride=2,padding=0)

    def forward(self, x):

        c1 = self.maxpool(x)
        # print("c1",c1.shape)
        c2 = self.conv1(x)
        # print("c2", c2.shape)
        c3 = self.conv2(x)
        # print("c3", c3.shape)
        c3_1 = self.conv3(c3)
        # print("c3_1", c3_1.shape)
        c3_2 = self.conv4(c3_1)
        # print("c3_2", c3_2.shape)
        cat = torch.cat([c1, c2,c3_2], dim=1)

        return cat

Inception_ResNet_B

1、框架图
在这里插入图片描述
2、代码实现

class Inception_ResNet_B(nn.Module):
    def __init__(self, input):
        super(Inception_ResNet_B, self).__init__()
        self.conv1 = conv1x1(in_planes =input,out_channels=128,stride=1, padding=0)
        self.conv1x7 = nn.Conv2d(in_channels=128,out_channels=128,kernel_size=(1,7), padding=(0,3))
        self.conv7x1 = nn.Conv2d(in_channels=128, out_channels=128,kernel_size=(7,1), padding=(3,0))
        self.line = nn.Conv2d(256, 896, 1, stride=1, padding=0, bias=True)

        self.relu = nn.ReLU()

    def forward(self, x):

        c1 = self.conv1(x)
        # print("c1",c1.shape)
        c2 = self.conv1(x)
        # print("c2", c2.shape)
        c2_1 = self.conv1x7(c2)
        # print("c2_1", c2_1.shape)

        c2_1 = self.relu(c2_1)

        c2_2 = self.conv7x1(c2_1)
        # print("c2_2", c2_2.shape)

        c2_2 = self.relu(c2_2)

        cat = torch.cat([c1, c2_2], dim=1)
        line = self.line(cat)
        out =x+line

        out = self.relu(out)
        # print("out", out.shape)
        return out


Reduction_B

1、框架图
在这里插入图片描述
2、代码实现

class Reduction_B(nn.Module):
    def __init__(self, input):
        super(Reduction_B, self).__init__()
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.conv1 = conv1x1(in_planes=input,  out_channels=256, padding=1)
        self.conv2 = conv3x3(in_planes=256,  out_channels=384, stride=2, padding=0)
        self.conv3 = conv3x3(in_planes=256,  out_channels=256,stride=2, padding=0)
        self.conv4 = conv3x3(in_planes=256,  out_channels=256,  padding=1)
        self.conv5 = conv3x3(in_planes=256,  out_channels=256, stride=2, padding=0)
    def forward(self, x):
        c1 = self.maxpool(x)
        # print("c1", c1.shape)
        c2 = self.conv1(x)
        # print("c2", c2.shape)
        c3 = self.conv1(x)
        # print("c3", c3.shape)
        c4 = self.conv1(x)
        # print("c4", c4.shape)
        c2_1 = self.conv2(c2)
        # print("cc2_1", c2_1.shape)
        c3_1 = self.conv3(c3)
        # print("c3_1", c3_1.shape)
        c4_1 = self.conv4(c4)
        # print("c4_1", c4_1.shape)
        c4_2 = self.conv5(c4_1)
        # print("c4_2", c4_2.shape)
        cat = torch.cat([c1, c2_1, c3_1,c4_2], dim=1)
        # print("cat", cat.shape)
        return cat

Inception_ResNet_C

1、框架图
在这里插入图片描述

2、代码实现

class Inception_ResNet_C(nn.Module):
    def __init__(self, input):
        super(Inception_ResNet_C, self).__init__()
        self.conv1 = conv1x1(in_planes=input, out_channels=192, stride=1, padding=0)
        self.conv1x3 = nn.Conv2d(in_channels=192, out_channels=192, kernel_size=(1, 3), padding=(0,1))
        self.conv3x1 = nn.Conv2d(in_channels=192, out_channels=192, kernel_size=(3, 1), padding=(1,0))
        self.line = nn.Conv2d(384, 1792, 1, stride=1, padding=0, bias=True)

        self.relu = nn.ReLU()

    def forward(self, x):
        c1 = self.conv1(x)
        # print("x", x.shape)
        # print("c1",c1.shape)
        c2 = self.conv1(x)
        # print("c2", c2.shape)
        c2_1 = self.conv1x3(c2)
        # print("c2_1", c2_1.shape)

        c2_1 = self.relu(c2_1)
        c2_2 = self.conv3x1(c2_1)
        # print("c2_2", c2_2.shape)

        c2_2 = self.relu(c2_2)
        cat = torch.cat([c1, c2_2], dim=1)
        # print("cat", cat.shape)
        line = self.line(cat)
        out = x+ line
        # print("out", out.shape)
        out = self.relu(out)

        return out

Inception_ResNet_V1

代码实现


class Inception_ResNet(nn.Module):
    def __init__(self,classes=2):
        super(Inception_ResNet, self).__init__()
        blocks = []
        blocks.append(StemV1(in_planes=3))
        for i in range(5):
            blocks.append(Inception_ResNet_A(input=256))
        blocks.append(Reduction_A(input=256))
        for i in range(10):
            blocks.append(Inception_ResNet_B(input=896))
        blocks.append(Reduction_B(input=896))
        for i in range(10):
            blocks.append(Inception_ResNet_C(input=1792))

        self.features = nn.Sequential(*blocks)

        self.avepool = nn.AvgPool2d(kernel_size=3)

        self.dropout = nn.Dropout(p=0.2)
        self.linear = nn.Linear(1792, classes)

    def forward(self,x):
        x = self.features(x)
        # print("x",x.shape)
        x = self.avepool(x)
        # print("avepool", x.shape)
        x = self.dropout(x)
        # print("dropout", x.shape)
        x = x.view(x.size(0), -1)
        x = self.linear(x)

        return  x


  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-04-28 11:50:53  更:2022-04-28 11:51:50 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/6 18:01:42-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码