ITÊýÂë ¹ºÎï ÍøÖ· Í·Ìõ Èí¼þ ÈÕÀú ÔĶÁ ͼÊé¹Ý
TxTС˵ÔĶÁÆ÷
¡ýÓïÒôÔĶÁ,С˵ÏÂÔØ,¹ÅµäÎÄѧ¡ý
ͼƬÅúÁ¿ÏÂÔØÆ÷
¡ýÅúÁ¿ÏÂÔØͼƬ,ÃÀŮͼ¿â¡ý
ͼƬ×Ô¶¯²¥·ÅÆ÷
¡ýͼƬ×Ô¶¯²¥·ÅÆ÷¡ý
Ò»¼üÇå³ýÀ¬»ø
¡ýÇáÇáÒ»µã,Çå³ýϵͳÀ¬»ø¡ý
¿ª·¢: C++֪ʶ¿â Java֪ʶ¿â JavaScript Python PHP֪ʶ¿â È˹¤ÖÇÄÜ Çø¿éÁ´ ´óÊý¾Ý Òƶ¯¿ª·¢ ǶÈëʽ ¿ª·¢¹¤¾ß Êý¾Ý½á¹¹ÓëËã·¨ ¿ª·¢²âÊÔ ÓÎÏ·¿ª·¢ ÍøÂçЭÒé ϵͳÔËά
½Ì³Ì: HTML½Ì³Ì CSS½Ì³Ì JavaScript½Ì³Ì GoÓïÑÔ½Ì³Ì JQuery½Ì³Ì VUE½Ì³Ì VUE3½Ì³Ì Bootstrap½Ì³Ì SQLÊý¾Ý¿â½Ì³Ì CÓïÑÔ½Ì³Ì C++½Ì³Ì Java½Ì³Ì Python½Ì³Ì Python3½Ì³Ì C#½Ì³Ì
ÊýÂë: µçÄÔ ±Ê¼Ç±¾ ÏÔ¿¨ ÏÔʾÆ÷ ¹Ì̬ӲÅÌ Ó²ÅÌ ¶ú»ú ÊÖ»ú iphone vivo oppo СÃ× »ªÎª µ¥·´ ×°»ú ͼÀ­¶¡
 
   -> È˹¤ÖÇÄÜ -> »ùÓÚTensorflowʵÏÖÒ»¸öTransformer·­ÒëÆ÷ -> ÕýÎÄÔĶÁ

[È˹¤ÖÇÄÜ]»ùÓÚTensorflowʵÏÖÒ»¸öTransformer·­ÒëÆ÷

TransformerÊǹȸèÔÚ2017ÄêµÄһƪÂÛÎÄ"Attention is all you need"Ìá³öµÄÒ»¸öseq2seqµÄÄ£Ðͼܹ¹,Æä´´ÔìÐÔµÄÌá³öÁË×Ô×¢ÒâÁ¦µÄ˼Ïë,¿ÉÒԺܺõıí´ïÐòÁÐÖи÷¸öµ¥´ÊÖ®¼äµÄÏ໥עÒâÁ¦¹Øϵ¡£Õâ¸öÄ£ÐÍÔÚNLPÁìÓòÈ¡µÃÁ˾޴óµÄ³É¹¦¡£´ËÍâÕâ¸öÄ£Ðͼܹ¹ÔÚ×î½ü¼¸ÄêÒ²ÔÚCVÁìÓòÈ¡µÃÁËÁîÈËÖõÄ¿µÄ½øÕ¹,ÔÚͼÏñʶ±ð,Ä¿±ê¼ì²âµÈ·½Ã涼´ïµ½»ò³¬¹ýCNNÄ£Ð͵ÄÐÔÄÜ¡£Òò´ËTransformer¿ÉÒÔ˵ÊÇÈ˹¤ÖÇÄÜÁìÓò×î½ü×îÖµµÃ¹Ø×¢ºÍѧϰµÄÒ»¸ö¼Ü¹¹¡£Ä¿Ç°ÓÐÍøÉÏÒѾ­ÓкܶàÎÄÕÂÏêϸ½â¶ÁÁËTransformerµÄ¼Ü¹¹ºÍÆäϸ½Ú,ÕâÀïÎÒ½«²»ÔÙÖظ´Õâ·½ÃæµÄÄÚÈÝ,¶øÊǹØ×¢ÔÚʵս·½Ãæ,»ùÓÚTensorflowÀ´´î½¨Ò»¸öTransformerÄ£ÐÍ,ʵÏÖ·¨ÓïºÍÓ¢ÓïµÄ·­Òë¡£

ÔÚTensorflowµÄ¹ÙÍøÉÏÓÐÒ»¸öÏêϸµÄ½Ì³Ì,½éÉÜÁËÈçºÎ´î½¨TranformerÀ´ÊµÏÖÆÏÌÑÑÀÓï·­ÒëΪӢÓï¡£ÎÒÒ²ÊÇѧϰÁËÕâ¸ö½Ì³ÌÖ®ºó,½øÐÐһЩ¸ÄÔì,ÒÔʵÏÖ¶Ô·¨Óï-Ó¢ÓïµÄ·­Òë¡£

Êý¾Ý¼¯µÄ×¼±¸

ÔÚÕâ¸öÍøÕ¾Tab-delimited Bilingual Sentence Pairs from the Tatoeba Project (Good for Anki and Similar Flashcard Applications)¿ÉÒÔÕÒµ½ºÜ¶à²»Í¬µÄÓïÑÔÓëÓ¢ÓïµÄ·­Òë¡£ÕâÀïÎÒÃÇÏÂÔØ·¨Óï-Ó¢ÓïµÄÊý¾Ý×÷ΪѵÁ·¼¯ºÍÑéÖ¤¼¯¡£ÏÂÔØhttp://www.manythings.org/anki/fra-eng.zipÕâ¸öÎļþ²¢½âѹ֮ºó,ÎÒÃÇ¿ÉÒÔ¿´µ½ÀïÃæÿһÐжÔÓ¦Ò»¸öÓ¢Óï¾ä×ÓºÍÒ»¸ö·¨Óï¾ä×Ó,ÒÔ¼°¾ä×ӵűÏ×Õß,ÖмäÒÔTAB·Ö¸ô¡£

ÒÔÏ´úÂëÊǶÁÈ¡ÎļþµÄÊý¾Ý²¢²é¿´·¨ÓïºÍÓ¢ÓïµÄ¾ä×Ó:

fra = []
eng = []
with open('fra.txt', 'r') as f:
    content = f.readlines()
    for line in content:
        temp = line.split(sep='\t')
        eng.append(temp[0])
        fra.append(temp[1])

²é¿´ÕâЩ¾ä×Ó,¿ÉÒÔ¿´µ½ÓÐЩ¾ä×Ó°üº¬ÌØÊâ×Ö·û,ÀýÈç'Cours\u202f!' ÎÒÃÇÐèÒª°ÑÕâЩÌØÊâµÄ²»¿É¼û×Ö·û(\u202f, \xa0 ...)È¥³ýµô

new_fra = []
new_eng = []
for item in fra:
    new_fra.append(re.sub('\s', ' ', item).strip().lower())
for item in eng:
    new_eng.append(re.sub('\s', ' ', item).strip().lower())

µ¥´Ê´¦ÀíΪtoken

ÒòΪģÐÍÖ»ÄÜ´¦ÀíÊý×Ö,ÐèÒª°ÑÕâЩ·¨ÓïºÍÓ¢ÓïµÄµ¥´ÊתΪtoken¡£ÕâÀï²ÉÓÃBERT tokenizerµÄ·½Ê½À´´¦Àí,¾ßÌå¿ÉÒԲμûtensorflowµÄ½Ì³ÌSubword tokenizers ?|? Text ?|? TensorFlow

Ê×ÏÈ´´½¨Á½¸ödataset,·Ö±ð°üº¬ÁË·¨ÓïºÍÓ¢ÓïµÄ¾ä×Ó¡£

ds_fra = tf.data.Dataset.from_tensor_slices(new_fra)
ds_eng = tf.data.Dataset.from_tensor_slices(new_eng)

µ÷ÓÃtensorflowµÄbert_vocab¿âÀ´´´½¨´Ê»ã±í,ÕâÀﶨÒåÁËһЩ±£ÁôtokenÓÃÓÚÌØÊâÄ¿µÄ,ÀýÈç[START]±êʶ¾ä×ӵĿªÊ¼,[UNK]±êʶһ¸ö²»ÔÚ´Ê»ã±í³öÏÖµÄе¥´Ê¡£

bert_tokenizer_params=dict(lower_case=True)
reserved_tokens=["[PAD]", "[UNK]", "[START]", "[END]"]

bert_vocab_args = dict(
    # The target vocabulary size
    vocab_size = 8000,
    # Reserved tokens that must be included in the vocabulary
    reserved_tokens=reserved_tokens,
    # Arguments for `text.BertTokenizer`
    bert_tokenizer_params=bert_tokenizer_params,
    # Arguments for `wordpiece_vocab.wordpiece_tokenizer_learner_lib.learn`
    learn_params={},
)

fr_vocab = bert_vocab.bert_vocab_from_dataset(
    ds_fra.batch(1000).prefetch(2),
    **bert_vocab_args
)

en_vocab = bert_vocab.bert_vocab_from_dataset(
    ds_eng.batch(1000).prefetch(2),
    **bert_vocab_args
)

´Ê»ã±í´¦ÀíÍê³ÉÖ®ºó,ÎÒÃÇ¿ÉÒÔ¿´¿´ÀïÃæ°üº¬ÄÄЩÄÚÈÝ:

print(en_vocab[:10])
print(en_vocab[100:110])
print(en_vocab[1000:1010])
print(en_vocab[-10:])

Êä³öÈçÏÂ,¿ÉÒÔ¿´µ½´Ê»ã±í²»ÊÇÑϸñ°´ÕÕÿ¸öÓ¢Óïµ¥´ÊÀ´»®·ÖµÄ,ÀýÈç'##ers'±íʾij¸öµ¥´ÊÈç¹ûÒÔers½áβ,Ôò»á»®·Ö³öÒ»¸ö'##ers'µÄtoken

['[PAD]', '[UNK]', '[START]', '[END]', '!', '"', '$', '%', '&', "'"]
['ll', 'there', 've', 'and', 'him', 'time', 'here', 'about', 'get', 'didn']
['##ers', 'chair', 'earth', 'honest', 'succeed', '##ted', 'animals', 'bill', 'drank', 'lend']
['##?', '##j', '##q', '##z', '##¡ã', '##¨C', '##¡ª', '##¡®', '##¡¯', '##€']

°Ñ´Ê»ã±í±£´æΪÎļþ,È»ºóÎÒÃǾͿÉÒÔʵÀý»¯Á½¸ötokenizer,ÒÔʵÏÖ¶Ô·¨ÓïºÍÓ¢Óï¾ä×ÓµÄtoken»¯´¦Àí¡£

def write_vocab_file(filepath, vocab):
    with open(filepath, 'w') as f:
        for token in vocab:
            print(token, file=f)
write_vocab_file('fr_vocab.txt', fr_vocab)
write_vocab_file('en_vocab.txt', en_vocab)

fr_tokenizer = text.BertTokenizer('fr_vocab.txt', **bert_tokenizer_params)
en_tokenizer = text.BertTokenizer('en_vocab.txt', **bert_tokenizer_params)

ÏÂÃæÎÒÃÇ¿ÉÒÔ²âÊÔһ϶ÔһЩӢÓï¾ä×Ó½øÐÐtoken´¦ÀíºóµÄ½á¹û,ÕâÀïÎÒÃÇÐèÒª¸øÿ¸ö¾ä×ӵĿªÍ·ºÍ½áβ·Ö±ð¼ÓÉÏ[START]ºÍ[END]ÕâÁ½¸öÌØÊâµÄtoken,ÕâÑù¿ÉÒÔ·½±ãÒÔºóÄ£Ð͵ÄѵÁ·¡£

START = tf.argmax(tf.constant(reserved_tokens) == "[START]")
END = tf.argmax(tf.constant(reserved_tokens) == "[END]")

def add_start_end(ragged):
    count = ragged.bounding_shape()[0]
    starts = tf.fill([count,1], START)
    ends = tf.fill([count,1], END)
    return tf.concat([starts, ragged, ends], axis=1)

sentences = ["Hello Roy!", "The sky is blue.", "Nice to meet you!"]

add_start_end(en_tokenizer.tokenize(sentences).merge_dims(1,2)).to_tensor()

Êä³ö½á¹ûÈçÏÂ:

<tf.Tensor: shape=(3, 7), dtype=int64, numpy=
array([[   2, 1830,   45, 3450,    4,    3,    0],
       [   2,   62, 1132,   64,  996,   13,    3],
       [   2,  353,   61,  416,   60,    4,    3]])>

¹¹½¨Êý¾Ý¼¯

ÏÖÔÚÎÒÃÇ¿ÉÒÔ¹¹½¨ÑµÁ·¼¯ºÍÑéÖ¤¼¯ÁË¡£ÕâÀïÐèÒª°Ñ·¨ÓïºÍÓ¢ÓïµÄ¾ä×Ó¶¼°üÀ¨ÔÚÊý¾Ý¼¯ÖÐ,ÆäÖз¨Óï¾ä×Ó×÷ΪTransformer±àÂëÆ÷µÄÊäÈë,Ó¢Óï¾ä×Ó×÷Ϊ½âÂëÆ÷µÄÊäÈëÒÔ¼°Ä£ÐÍÊä³öµÄTarget¡£ÕâÀïÎÒÃÇÓÃPandas¹¹ÔìÒ»¸öDataframe,Ëæ»ú»®·ÖÆäÖÐ80%µÄÊý¾ÝΪѵÁ·¼¯,ÆäÓàΪÑéÖ¤¼¯¡£È»ºóת»»ÎªTensorflowµÄdataset

df = pd.DataFrame(data={'fra':new_fra, 'eng':new_eng})

# Shuffle the Dataframe
recordnum = df.count()['fra']
indexlist = list(range(recordnum-1))
random.shuffle(indexlist)
df_train = df.loc[indexlist[:int(recordnum*0.8)]]
df_val = df.loc[indexlist[int(recordnum*0.8):]]

ds_train = tf.data.Dataset.from_tensor_slices((df_train.fra.values, df_train.eng.values))
ds_val = tf.data.Dataset.from_tensor_slices((df_val.fra.values, df_val.eng.values))

²é¿´ÑµÁ·¼¯µÄ¾ä×Ó×î¶à°üº¬¶àÉÙ¸ötoken

lengths = []

for fr_examples, en_examples in ds_train.batch(1024):
    fr_tokens = fr_tokenizer.tokenize(fr_examples)
    lengths.append(fr_tokens.row_lengths())

    en_tokens = en_tokenizer.tokenize(en_examples)
    lengths.append(en_tokens.row_lengths())
    print('.', end='', flush=True)

all_lengths = np.concatenate(lengths)

plt.hist(all_lengths, np.linspace(0, 100, 11))
plt.ylim(plt.ylim())
max_length = max(all_lengths)
plt.plot([max_length, max_length], plt.ylim())
plt.title(f'Max tokens per example: {max_length}');

´Ó½á¹ûÖпÉÒÔ¿´µ½ÑµÁ·¼¯µÄ¾ä×Óת»»Îªtokenºó×î¶à°üº¬67¸ötoken:

Ö®ºó¾Í¿ÉÒÔΪÊý¾Ý¼¯Éú³Ébatch,ÈçÒÔÏ´úÂë:

BUFFER_SIZE = 20000
BATCH_SIZE = 64
MAX_TOKENS = 67

def filter_max_tokens(fr, en):
    num_tokens = tf.maximum(tf.shape(fr)[1],tf.shape(en)[1])
    return num_tokens < MAX_TOKENS

def tokenize_pairs(fr, en):
    fr = add_start_end(fr_tokenizer.tokenize(fr).merge_dims(1,2))
    # Convert from ragged to dense, padding with zeros.
    fr = fr.to_tensor()

    en = add_start_end(en_tokenizer.tokenize(en).merge_dims(1,2))
    # Convert from ragged to dense, padding with zeros.
    en = en.to_tensor()
    return fr, en

def make_batches(ds):
    return (
        ds
        .cache()
        .shuffle(BUFFER_SIZE)
        .batch(BATCH_SIZE)
        .map(tokenize_pairs, num_parallel_calls=tf.data.AUTOTUNE)
        .filter(filter_max_tokens)
        .prefetch(tf.data.AUTOTUNE))

train_batches = make_batches(ds_train)
val_batches = make_batches(ds_val)

¿ÉÒÔÉú³ÉÒ»¸öbatchÀ´²é¿´Ò»ÏÂ:

for a in train_batches.take(1):
    print(a)

½á¹ûÈçÏÂ,¿É¼ûÿ¸öbatch°üº¬Á½¸ötensor,·Ö±ð¶ÔÓ¦·¨ÓïºÍÓ¢Óï¾ä×Óת»¯ÎªtokenÖ®ºóµÄÏòÁ¿,ÿ¸ö¾ä×ÓÒÔtoken 2¿ªÍ·,ÒÔtoken 3½áβ:

(<tf.Tensor: shape=(64, 24), dtype=int64, numpy=
array([[   2,   39,    9, ...,    0,    0,    0],
       [   2,   62,   43, ...,    0,    0,    0],
       [   2,  147,   70, ...,    0,    0,    0],
       ...,
       [   2, 4310,   14, ...,    0,    0,    0],
       [   2,   39,    9, ...,    0,    0,    0],
       [   2,   68,   64, ...,    0,    0,    0]])>, <tf.Tensor: shape=(64, 20), dtype=int64, numpy=
array([[ 2, 36, 76, ...,  0,  0,  0],
       [ 2, 36, 75, ...,  0,  0,  0],
       [ 2, 92, 80, ...,  0,  0,  0],
       ...,
       [ 2, 68, 60, ...,  0,  0,  0],
       [ 2, 36, 75, ...,  0,  0,  0],
       [ 2, 67,  9, ...,  0,  0,  0]])>)

¸øÊäÈëÊý¾ÝÌí¼ÓλÖÃÐÅÏ¢

°ÑÉÏÃæµÃµ½µÄbatchÊý¾ÝÊäÈëµ½embedding²ã,¾Í¿ÉÒÔ°Ñÿ¸ötokenת»¯ÎªÒ»¸ö¸ßλÏòÁ¿,ÀýÈçת»»ÎªÒ»¸ö128άµÄÏòÁ¿¡£Ö®ºóÎÒÃÇÐèÒª¸øÕâ¸öÏòÁ¿Ôö¼ÓÒ»¸öλÖÃÐÅÏ¢ÒÔ±íʾÕâ¸ötokenÔÚ¾ä×ÓÖеÄλÖá£ÂÛÎĸø³öÁËÒ»ÖÖ¶ÔλÖÃÐÅÏ¢½øÐбàÂëµÄ·½·¨,ÈçÒÔÏµĹ«Ê½:

PE_{(pos,2i)}=sin(pos/10000^{2i/ d_{model}})

PE_{(pos,2i+1)}=cos(pos/10000^{2i/ d_{model}})

¹«Ê½ÖÐpos±íʾ´ÊÓïµÄλÖÃ,ÀýÈçÒ»¸ö¾ä×ÓÓÐ50¸öµ¥´Ê,posÈ¡Öµ·¶Î§Îª0-49. d_model±íʾembeddingµÄά¶È,ÀýÈç°Ñÿ¸öµ¥´ÊÓ³ÉäΪһ¸ö128άµÄÏòÁ¿,d_model=128. i±íʾÕâ128άÀïÃæµÄά¶È,È¡Öµ·¶Î§Îª0-127
Òò´Ë¹«Ê½µÄº¬ÒåΪ,¶ÔµÚN¸öµ¥´Ê,ÔÚÆä128άµÄǶÈëÏòÁ¿ÖÐ,ÿ¸öά¶È¶¼¼ÓÉ϶ÔÓ¦µÄλÖÃÐÅÏ¢.
ÒÔµÚ3¸öµ¥´ÊΪÀý,pos=2, ÔÚÆä¶ÔÓ¦µÄ128άÏòÁ¿,ÆäżÊýά(0,2,4...)ÐèÒª¼ÓÉÏsin(2/10000^(2i/128)),2iµÄ¶ÔӦȡֵÊÇ(0,2,4...). µÚ2i+1ά(1,3,5...)ÐèÒª¼ÓÉÏcos(2/10000^(2i/128)),2iµÄ¶ÔӦȡֵÊÇ(0,2,4...)

ÒÔÏ´úÂ뽫Éú³ÉλÖñàÂëÏòÁ¿,Õâ¸öÏòÁ¿¿ÉÒÔ¼ÓÈëµ½tokenµÄǶÈëÏòÁ¿ÖС£

def get_angles(pos, i, d_model):
    angle_rates = 1 / np.power(10000, (2 * (i//2)) / np.float32(d_model))
    return pos * angle_rates

def positional_encoding(position, d_model):
    angle_rads = get_angles(np.arange(position)[:, np.newaxis],
                          np.arange(d_model)[np.newaxis, :],
                          d_model)

    # apply sin to even indices in the array; 2i
    angle_rads[:, 0::2] = np.sin(angle_rads[:, 0::2])

    # apply cos to odd indices in the array; 2i+1
    angle_rads[:, 1::2] = np.cos(angle_rads[:, 1::2])

    pos_encoding = angle_rads[np.newaxis, ...]

    return tf.cast(pos_encoding, dtype=tf.float32)

´´½¨PaddingÑÚÂëºÍlook aheadÑÚÂë

MaskÓÃÓÚ±êʶÊäÈëÐòÁÐÖÐΪ0µÄλÖÃ,Èç¹ûΪ0,ÔòMaskΪ1. ÕâÑù¿ÉÒÔʹµÃpaddingµÄ×Ö·û²»»á²ÎÓ뵽ģÐ͵ÄѵÁ·ÖÐ
Look ahead maskÊÇÓÃÓÚÔÚÔ¤²âÊÇÑÚ¸ÇδÀ´µÄ×Ö·û,ÀýÈç·­ÒëÒ»¾ä·¨Óï,¶ÔÓ¦µÄÓ¢ÓïÊÇÄ¿±êÊý¾Ý,ÔÚѵÁ·Ê±,µ±Ô¤²âµÚÒ»¸öÓ¢Óïµ¥´Êʱ,ÐèÒª°ÑÕû¾äÓ¢ÓﶼÑÚ¸Ç,µ±Ô¤²âµÚ¶þ¸öÓ¢Óïµ¥´Êʱ,ÐèÒª°ÑÕû¾äÓ¢ÓïµÄµÚÒ»¸öµ¥´ÊÖ®ºóµÄ¶¼Ñڸǡ£Õâ¸öÄ¿µÄÊDZÜÃâÈÃÄ£ÐÍ¿´µ½Ö®ºóÒªÔ¤²âµÄµ¥´Ê,Ó°ÏìÄ£Ð͵ÄѵÁ·¡£

def create_padding_mask(seq):
    seq = tf.cast(tf.math.equal(seq, 0), tf.float32)

    # add extra dimensions to add the padding
    # to the attention logits.
    return seq[:, tf.newaxis, tf.newaxis, :]  # (batch_size, 1, 1, seq_len)

def create_look_ahead_mask(size):
    mask = 1 - tf.linalg.band_part(tf.ones((size, size)), -1, 0)
    return mask  # (seq_len, seq_len)

×Ô×¢ÒâÁ¦¼ÆËã

ÏÖÔÚÀ´µ½ÁËTransformerµÄºËÐĸÅÄîÁË,ÎÒÃÇÐèÒª°ÑÊäÈëµÄÏòÁ¿,ͨ¹ýÈý¸öÏßÐÔת»»µÄ¾ØÕó,°ÑËü±äΪQ,K,VÈý¸öÏòÁ¿¡£
ͨ¹ý¼ÆËãQºÍKµÄÏàËÆÐÔÀ´µÃµ½×¢ÒâÁ¦ÏµÊý,ÔÙºÍVÏà³Ë,µÃµ½¶ÔÓ¦µÄÊýÖµ,ÈçÒÔϵÄͼƬ:

×¢ÒâÁ¦È¨ÖصļÆË㹫ʽÈçÏÂ:

  È˹¤ÖÇÄÜ ×îÐÂÎÄÕÂ
2022Îâ¶÷´ï»úÆ÷ѧϰ¿Î³Ì¡ª¡ªµÚ¶þ¿Î£¨Éñ¾­Íø
µÚÊ®ÎåÕ ¹æÔòѧϰ
FixMatch: Simplifying Semi-Supervised Le
Êý¾ÝÍÚ¾òJava¡ª¡ªKmeansËã·¨µÄʵÏÖ
´óÄÔƤ²ãµÄ·Ö¸î·½·¨
¡¾·­Òë¡¿GPT-3ÊÇÈçºÎ¹¤×÷µÄ
ÂÛÎıʼÇ:TEACHTEXT: CrossModal Generaliz
python´ÓÁãѧ£¨Áù£©
Ïê½âPython 3.x µ¼Èë(import)
¡¾´ð¶ÁÕßÎÊ27¡¿backtrader²»Ö§³Ö×îа汾µÄ
ÉÏһƪÎÄÕ      ÏÂһƪÎÄÕ      ²é¿´ËùÓÐÎÄÕÂ
¼Ó:2022-04-29 12:08:38  ¸ü:2022-04-29 12:09:44 
 
¿ª·¢: C++֪ʶ¿â Java֪ʶ¿â JavaScript Python PHP֪ʶ¿â È˹¤ÖÇÄÜ Çø¿éÁ´ ´óÊý¾Ý Òƶ¯¿ª·¢ ǶÈëʽ ¿ª·¢¹¤¾ß Êý¾Ý½á¹¹ÓëËã·¨ ¿ª·¢²âÊÔ ÓÎÏ·¿ª·¢ ÍøÂçЭÒé ϵͳÔËά
½Ì³Ì: HTML½Ì³Ì CSS½Ì³Ì JavaScript½Ì³Ì GoÓïÑÔ½Ì³Ì JQuery½Ì³Ì VUE½Ì³Ì VUE3½Ì³Ì Bootstrap½Ì³Ì SQLÊý¾Ý¿â½Ì³Ì CÓïÑÔ½Ì³Ì C++½Ì³Ì Java½Ì³Ì Python½Ì³Ì Python3½Ì³Ì C#½Ì³Ì
ÊýÂë: µçÄÔ ±Ê¼Ç±¾ ÏÔ¿¨ ÏÔʾÆ÷ ¹Ì̬ӲÅÌ Ó²ÅÌ ¶ú»ú ÊÖ»ú iphone vivo oppo СÃ× »ªÎª µ¥·´ ×°»ú ͼÀ­¶¡

360ͼÊé¹Ý ¹ºÎï Èý·á¿Æ¼¼ ÔĶÁÍø ÈÕÀú ÍòÄêÀú 2025Äê1ÈÕÀú -2025/1/6 16:20:52-

ͼƬ×Ô¶¯²¥·ÅÆ÷
¡ýͼƬ×Ô¶¯²¥·ÅÆ÷¡ý
TxTС˵ÔĶÁÆ÷
¡ýÓïÒôÔĶÁ,С˵ÏÂÔØ,¹ÅµäÎÄѧ¡ý
Ò»¼üÇå³ýÀ¬»ø
¡ýÇáÇáÒ»µã,Çå³ýϵͳÀ¬»ø¡ý
ͼƬÅúÁ¿ÏÂÔØÆ÷
¡ýÅúÁ¿ÏÂÔØͼƬ,ÃÀŮͼ¿â¡ý
  ÍøÕ¾ÁªÏµ: qq:121756557 email:121756557@qq.com  ITÊýÂë