IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> paddle模型的保存与加载 -> 正文阅读

[人工智能]paddle模型的保存与加载

一、什么是模型的保存与加载?
人工智能模型本质上就是一堆参数,我们训练模型时就是使这些参数在某个任务上合理以使其能够得到较为准确预测结果输出。例如猫狗分类任务,训练一系列卷积核数值能够通过前向计算预测出类别。我们花了大量时间训练的模型肯定不想只训练结束后只使用一次,我们想的肯定是能够重复使用这个模型在后续的任务上继续做预测。那就涉及到模型的保存与加载。
二、模型的保存
paddle框架中模型保存加载相关API
paddle.save
paddle.load
paddle.jit.save
paddle.jit.load
paddle.static.save_inference_model
paddle.static.load_inference_model
其中paddle.save/load用于只保存/载入模型参数
paddle.jit.save/load可用于保存模型结构用作以后的推理
paddle.static.save_inference_model/load_inference_model用于保存静态图模型
api关系图
在这里插入图片描述

下面以一个paddle官方文档中给出的一个例子学习这几个api的使用,我会详细地注释每一行代码。

import numpy as np#引入nunpy计算包
import paddle#引入paddle包
import paddle.nn as nn#引入网络结构包
import paddle.optimizer as opt#引入优化器包

BATCH_SIZE = 16#batch_size:表示一批数据包含多少条数据,这里是16条数据
BATCH_NUM = 4#batch数
EPOCH_NUM = 4#训练轮数

IMAGE_SIZE = 784#输入数据尺寸
CLASS_NUM = 10#标签类别数

# define a random dataset
class RandomDataset(paddle.io.Dataset):#生成数据集类,模拟一个数据集
    def __init__(self, num_samples):
        self.num_samples = num_samples#样本数

    def __getitem__(self, idx):
        image = np.random.random([IMAGE_SIZE]).astype('float32')#生成数据
        label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')#生成标签
        return image, label

    def __len__(self):
        return self.num_samples

class LinearNet(nn.Layer):#搭建网络结构
    def __init__(self):
        super(LinearNet, self).__init__()
        self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)#网络为一全连接层,输入784维输出10维

    def forward(self, x):
        return self._linear(x)#前向计算

def train(layer, loader, loss_fn, opt):#训练函数
    for epoch_id in range(EPOCH_NUM):
        for batch_id, (image, label) in enumerate(loader()):
            out = layer(image)#输出结果
            loss = loss_fn(out, label)#得到损失函数
            loss.backward()#反向传播
            opt.step()
            opt.clear_grad()#清除梯度
            print("Epoch {} batch {}: loss = {}".format(
                epoch_id, batch_id, np.mean(loss.numpy())))

# create network
layer = LinearNet()
loss_fn = nn.CrossEntropyLoss()
adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())

# create data loader
dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
loader = paddle.io.DataLoader(dataset,
    batch_size=BATCH_SIZE,
    shuffle=True,
    drop_last=True,
    num_workers=2)

# train
train(layer, loader, loss_fn, adam)

一、参数保存
1.paddle.save/load保存模型参数
参数保存时,先获取目标对象(Layer或者Optimzier)的state_dict,然后将state_dict保存至磁盘,示例如下(接前述示例):

# save
paddle.save(layer.state_dict(), "linear_net.pdparams")
paddle.save(adam.state_dict(), "adam.pdopt")

2.载入模型参数
参数载入时,先从磁盘载入保存的state_dict,然后通过set_state_dict方法配置到目标对象中,示例如下(接前述示例):

# load
layer_state_dict = paddle.load("linear_net.pdparams")
opt_state_dict = paddle.load("adam.pdopt")

layer.set_state_dict(layer_state_dict)
adam.set_state_dict(opt_state_dict)

2.1仅保存模型参数
若仅需保存模型参数,不保存模型结构则可通过paddle.save/load保存参数

import paddle
import paddle.static as static

paddle.enable_static()

# create network
x = paddle.static.data(name="x", shape=[None, 224], dtype='float32')#创建输入到模型中的参数
z = paddle.static.nn.fc(x, 10)#前向计算

place = paddle.CPUPlace()
exe = paddle.static.Executor(place)
exe.run(paddle.static.default_startup_program())
prog = paddle.static.default_main_program()

接下来保存参数

paddle.save(prog.state_dict(), "temp/model.pdparams")

如果想要保存整个静态图模型,除了state_dict还需要保存Program

paddle.save(prog, "temp/model.pdmodel")

二、训练部署场景的模型&参数保存载入

2.1动态图模型&参数保存载入(保存训练推理的模型)
若要同时保存/载入动态图模型结构和参数,可以使用 paddle.jit.save/load 实现。
模型&参数存储根据训练模式不同,有两种使用情况:

1.动转静训练 + 模型&参数保存

2.动态图训练 + 模型&参数保存
2.1.1动转静训练 + 模型&参数保存
动转静训练相比直接使用动态图训练具有更好的执行性能,训练完成后,直接将目标Layer传入 paddle.jit.save 保存即可。:

一个简单的网络训练示例如下:

import numpy as np
import paddle
import paddle.nn as nn
import paddle.optimizer as opt

BATCH_SIZE = 16
BATCH_NUM = 4
EPOCH_NUM = 4

IMAGE_SIZE = 784
CLASS_NUM = 10

# define a random dataset
class RandomDataset(paddle.io.Dataset):
    def __init__(self, num_samples):
        self.num_samples = num_samples

    def __getitem__(self, idx):
        image = np.random.random([IMAGE_SIZE]).astype('float32')
        label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
        return image, label

    def __len__(self):
        return self.num_samples

class LinearNet(nn.Layer):
    def __init__(self):
        super(LinearNet, self).__init__()
        self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)

    @paddle.jit.to_static
    def forward(self, x):
        return self._linear(x)

def train(layer, loader, loss_fn, opt):
    for epoch_id in range(EPOCH_NUM):
        for batch_id, (image, label) in enumerate(loader()):
            out = layer(image)
            loss = loss_fn(out, label)
            loss.backward()
            opt.step()
            opt.clear_grad()
            print("Epoch {} batch {}: loss = {}".format(
                epoch_id, batch_id, np.mean(loss.numpy())))

# create network
layer = LinearNet()
loss_fn = nn.CrossEntropyLoss()
adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())

# create data loader
dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
loader = paddle.io.DataLoader(dataset,
    batch_size=BATCH_SIZE,
    shuffle=True,
    drop_last=True,
    num_workers=2)

# train
train(layer, loader, loss_fn, adam)

随后使用 paddle.jit.save 对模型和参数进行存储(接前述示例):

# save
path = "example.model/linear"
paddle.jit.save(layer, path)

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-04-29 12:08:38  更:2022-04-29 12:10:04 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/6 16:37:11-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码