IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 【LCMV】基于LCMV的参数辨识算法matlab仿真 -> 正文阅读

[人工智能]【LCMV】基于LCMV的参数辨识算法matlab仿真

1.软件版本

MATLAB2013b

2.本算法理论知识

算法源于文献:

?

3.部分核心代码

clc;
clear;
close all;
warning off;

Num_Sensor   = 16;
Num_signal   = 2;
Num_babe     = 2;
b            = zeros(Num_Sensor,1);
H            = zeros(Num_Sensor,Num_signal);
DOA          = zeros(Num_signal,1);
wavelength   = 0.06; 
Iteration    = 1:1:20;
SNR          = 12;
d            = 0.5*wavelength*ones(Num_Sensor,1);%阵元间距
f            = zeros(Num_signal,1);
f(1)         = 1;
Len_Signal   = 100000;
Len_train    = round(0.01*Len_Signal);
%设置延迟长度
Len_delays   = round(0.05*Len_Signal);
Train_Signal = zeros(Num_signal,Len_train); 
Train_Noise  = zeros(Num_Sensor,Len_train); 
%信号和噪声以及反射信号和反射噪声
Signal       = zeros(Num_signal,Len_Signal);
Noise        = zeros(Num_Sensor,Len_Signal);
%全值,LCMV不需要进行迭代更新
W            = zeros(Num_Sensor,1);
%根据所提供的场景,设置各个入射信号的方位角
DOA          = [0,pi-atan(2)];
%根据场景设置H(tableI算法为H已知,所以根据场景来设置)
for jj=1:Num_signal
    for ii=1:Num_Sensor
        b(ii)=exp(-j*2*pi*(ii-1)*d(ii)*sin(DOA(jj))/wavelength) ;
    end 
H(:,jj)=b/(b'*b)^0.5;
end 

%产生两路随机信号
Signalo        = randint(Num_signal,Len_Signal);
Signalo        = 2*(Signalo-0.5);
%反射信号
for i = 1:Num_signal
    Signal_reflect(i,:) = 0.2*[zeros(1,Len_delays),Signal(i,1:Len_Signal-Len_delays)];
end
Signal         = Signalo;

%产生babe噪声源
babble        = randn(Num_signal,Len_Signal)+j*randn(Num_signal,Len_Signal);
babble        = 2*(babble-0.5);
for i = 1:Num_signal
    babble_reflect(i,:) = 0.2*[zeros(1,Len_delays),babble(i,1:Len_Signal-Len_delays)];
end
%实际输入到麦克风的声源
Signal        = (Signalo + Signal_reflect + babble + babble_reflect)/4;

%传感器之间的噪声干扰
Noise         = randn(Num_Sensor,Len_Signal)+j*randn(Num_Sensor,Len_Signal);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
SNRs   = zeros(1,length(Iteration));
%在几种不同的信噪比下计算误码率
diBi   = 1/(2*10^(SNR/10))^0.5;
Noise  = Noise*diBi;




for Iter = Iteration    
    Iter
    Train_Signal = Signal(:,(1:Len_train));
    Train_Noise  = Noise(:,(1:Len_train));
    x            = H*Train_Signal + Train_Noise; %加噪声
    x1           = H*Signal       + Noise;       %加噪声
    %LCMV
    R            = x*x';
    W            = inv(R)*H*inv((H'*inv(R)*H))*f;
    y            = W'*x1;
    %以第一个信号源为准计算,如果是第二个信号源,也是同样处理
    %计算SNR值
    SNRs(Iter)   = 10*log10(mean(abs(y(1,:)).^2)/mean(abs(Noise(1,:)).^2));
    %计算SDR值
    SDRs(Iter)   = 10*log10(mean(abs(Signal(1,:)).^2)/mean(abs(Signal(1,:)-y(1,:)).^2));
end

figure;
subplot(211);
plot(Iteration,SNRs,'b--','LineWidth',2);
xlabel('Iteration');
ylabel('SNR[dB]')
axis([0,20,0,15]);
subplot(212);
plot(Iteration,SDRs,'b--','LineWidth',2);
xlabel('Iteration');
ylabel('SDR[dB]')
axis([0,20,0,15]);

save fig3.mat SNRs SDRs Iteration 
%计算后面的MSE值
save w_mat.mat W


4.操作步骤与仿真结论

????? 我们对tableI的算法进行仿真,同时给出了用于对比的LCMV算法,通过对比,我们得到如下的仿真结果:

图一:LCMV和LC-DANSE的SNR对比仿真图;

图二:LC-DANSE的MSE图(论文中MSE只是DANSE系列的对比,TableI对应其中一种)

图三:LC-DANSE中不同P之的SNR图。

图四:LCMV和LC-DANSE的随着p变化的SNR图。A27-03

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-04-30 08:42:53  更:2022-04-30 08:43:12 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/6 17:26:20-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码