IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> ConEx:Convolutional Complex Knowledge Graph Embeddings+代码 -> 正文阅读

[人工智能]ConEx:Convolutional Complex Knowledge Graph Embeddings+代码

Convolutional Complex Knowledge Graph Embeddings

1 介绍

1.1 思想

该论文的核心就是结合ComplEx和维度卷积的形式,进行知识图谱补全。

1.2 知识图谱中存在的关系

  • symmetric(对称)
    if ( h , r , t ) ? ? ( t , r , h ) (h, r, t) ?? (t, r, h) (h,r,t)??(t,r,h) for all pairs of entities h , t ∈ E h, t \in \mathbf {E} h,tE
  • anti-symmetric(反对称)
    if ( h , r , t ) ∈ G ? ( t , r , h ) ? G (h, r, t) ∈ G ? (t, r, h) \notin \mathbb G (h,r,t)G?(t,r,h)/?G for all h ≠ t h \neq t h?=t
  • transitive/composite(传递关系)
    if ( h , r , t ) ∈ G ∧ ( t , r , y ) ∈ G ? ( h , r , y ) ∈ G (h, r, t) ∈ G ∧ (t, r, y) ∈ G ? (h, r, y) ∈ G (h,r,t)G(t,r,y)G?(h,r,y)G for all h , t , y ∈ E h, t, y \in \mathbf {E} h,t,yE
  • inverse(逆关系)
    h and t是实体, , ( h , r , t ) ∈ G ? ? ( t , r ? 1 , h ) ∈ G , (h, r, t) \in \mathbb G ?? (t, r^{-1}, h) \in \mathbb G ,(h,r,t)G??(t,r?1,h)G

1.3 ComplEx特点

将数据的维度引入复平面,可以执行以上四种类型的数据,但是在传递关系效果不好。

2 模型

2.1 公式

给一组三元组 ( h , r , t ) (\mathrm{h}, \mathrm{r}, \mathrm{t}) (h,r,t), ConEx,: C 3 d ? R \mathbb{C}^{3 d} \mapsto \mathbb{R} C3d?R 计算CONEx评分 : C 3 d ? R \mathbb{C}^{3 d} \mapsto \mathbb{R} C3d?R 公式为:
ConEx ? ( h , r , t ) = Re ? ( ? conv ? ( e h , e r ) , e h , e r , e t  ̄ ? ) \operatorname{ConEx}(\mathrm{h}, \mathrm{r}, \mathrm{t})=\operatorname{Re}\left(\left\langle\operatorname{conv}\left(\mathbf{e}_{h}, \mathbf{e}_{r}\right), \mathbf{e}_{h}, \mathbf{e}_{r}, \overline{\mathbf{e}_{t}}\right\rangle\right) ConEx(h,r,t)=Re(?conv(eh?,er?),eh?,er?,et???)
其中 conv ? ( ? , ? ) : C 2 d ? C d \operatorname{conv}(\cdot, \cdot): \mathbb{C}^{2 d} \mapsto \mathbb{C}^{d} conv(?,?):C2d?Cd 定义为:
conv ? ( e h , e r ) = f ( vec ? ( f ( [ e h , e r ] ? ω ) ) ? W + b ) \operatorname{conv}\left(\mathbf{e}_{h}, \mathbf{e}_{r}\right)=f\left(\operatorname{vec}\left(f\left(\left[\mathbf{e}_{h}, \mathbf{e}_{r}\right] * \omega\right)\right) \cdot \mathbf{W}+\mathbf{b}\right) conv(eh?,er?)=f(vec(f([eh?,er?]?ω))?W+b)
将公式展开为ComplEx的形式为:
ConEx ? ( h , r , t ) = Re ? ( ∑ k = 1 d ( γ ) k ( e h ) k ( e r ) k ( e t  ̄ ) k ) = ? Re ? ( γ ) , Re ? ( e h ) , Re ? ( e r ) , Re ? ( e t ) ? + ? Re ? ( γ ) , Re ? ( e h ) , Im ? ( e r ) , Im ? ( e t ) ? + ? Im ? ( γ ) , Im ? ( e h ) , Re ? ( e r ) , Im ? ( e t ) ? ? ? Im ? ( γ ) , Im ? ( e h ) , Im ? ( e r ) , Re ? ( e t ) ? \begin{aligned} \operatorname{ConEx}(h, r, t)=& \operatorname{Re}\left(\sum_{k=1}^{d}(\gamma)_{k}\left(\mathbf{e}_{h}\right)_{k}\left(\mathbf{e}_{r}\right)_{k}\left(\overline{\mathbf{e}_{t}}\right)_{k}\right) \\ =&\left\langle\operatorname{Re}(\gamma), \operatorname{Re}\left(\mathbf{e}_{h}\right), \operatorname{Re}\left(\mathbf{e}_{r}\right), \operatorname{Re}\left(\mathbf{e}_{t}\right)\right\rangle \\ &+\left\langle\operatorname{Re}(\gamma), \operatorname{Re}\left(\mathbf{e}_{h}\right), \operatorname{Im}\left(\mathbf{e}_{r}\right), \operatorname{Im}\left(\mathbf{e}_{t}\right)\right\rangle \\ &+\left\langle\operatorname{Im}(\gamma), \operatorname{Im}\left(\mathbf{e}_{h}\right), \operatorname{Re}\left(\mathbf{e}_{r}\right), \operatorname{Im}\left(\mathbf{e}_{t}\right)\right\rangle \\ &-\left\langle\operatorname{Im}(\gamma), \operatorname{Im}\left(\mathbf{e}_{h}\right), \operatorname{Im}\left(\mathbf{e}_{r}\right), \operatorname{Re}\left(\mathbf{e}_{t}\right)\right\rangle \end{aligned} ConEx(h,r,t)==?Re(k=1d?(γ)k?(eh?)k?(er?)k?(et??)k?)?Re(γ),Re(eh?),Re(er?),Re(et?)?+?Re(γ),Re(eh?),Im(er?),Im(et?)?+?Im(γ),Im(eh?),Re(er?),Im(et?)???Im(γ),Im(eh?),Im(er?),Re(et?)??
其中 e t  ̄ \overline{\mathbf{e}_{t}} et?? e t \mathbf{e}_{t} et?的共轭,而 γ \gamma γ conv ? ( e h , e r ) \operatorname{conv}\left(\mathbf{e}_{h}, \mathbf{e}_{r}\right) conv(eh?,er?) 卷积后的结果. 乘法包括 conv ? ( ? , ? ) \operatorname{conv}(\cdot, \cdot) conv(?,?) ,并且卷积之后产生两个结果, Re ? ( γ ) \operatorname{Re}(\gamma) Re(γ) and Im ? ( γ ) \operatorname{Im}(\gamma) Im(γ)

2.2 损失函数

在这里插入图片描述
其中 y ^ ∈ R ∣ ε ∣ \widehat{y}\in \mathbb R^{\left\vert \varepsilon \right\vert } y ?Rε为预测概率的向量, y ∈ [ 0 , 1 ] ∣ ε ∣ y\in [0, 1]^{\left\vert \varepsilon \right\vert } y[0,1]ε

3 代码

源码

class ConEx(torch.nn.Module):
    """ Convolutional Complex Knowledge Graph Embeddings"""

    def __init__(self, params=None):
        super(ConEx, self).__init__()
        self.name = 'ConEx'
        self.loss = torch.nn.BCELoss()
        self.param = params
        self.embedding_dim = self.param['embedding_dim']
        self.num_entities = self.param['num_entities']
        self.num_relations = self.param['num_relations']
        self.kernel_size = self.param['kernel_size']
        self.num_of_output_channels = self.param['num_of_output_channels']

        # Embeddings.
        self.emb_ent_real = nn.Embedding(self.param['num_entities'], self.embedding_dim)  # real
        self.emb_ent_i = nn.Embedding(self.param['num_entities'], self.embedding_dim)  # imaginary i

        self.emb_rel_real = nn.Embedding(self.param['num_relations'], self.embedding_dim)  # real
        self.emb_rel_i = nn.Embedding(self.param['num_relations'], self.embedding_dim)  # imaginary i

        # Dropouts
        self.input_dp_ent_real = torch.nn.Dropout(self.param['input_dropout'])
        self.input_dp_ent_i = torch.nn.Dropout(self.param['input_dropout'])
        self.input_dp_rel_real = torch.nn.Dropout(self.param['input_dropout'])
        self.input_dp_rel_i = torch.nn.Dropout(self.param['input_dropout'])

        # Batch Normalization
        self.bn_ent_real = torch.nn.BatchNorm1d(self.embedding_dim)
        self.bn_ent_i = torch.nn.BatchNorm1d(self.embedding_dim)
        self.bn_rel_real = torch.nn.BatchNorm1d(self.embedding_dim)
        self.bn_rel_i = torch.nn.BatchNorm1d(self.embedding_dim)

        # Convolution
        self.conv1 = torch.nn.Conv1d(in_channels=1, out_channels=self.num_of_output_channels,
                                     kernel_size=(self.kernel_size, self.kernel_size), stride=1, padding=1, bias=True)

        self.fc_num_input = self.embedding_dim * 4 * self.num_of_output_channels  # 4 because of 4 real values in 2 complex numbers
        self.fc = torch.nn.Linear(self.fc_num_input, self.embedding_dim * 2)

        self.bn_conv1 = torch.nn.BatchNorm2d(self.num_of_output_channels)
        self.bn_conv2 = torch.nn.BatchNorm1d(self.embedding_dim * 2)
        self.feature_map_dropout = torch.nn.Dropout2d(self.param['feature_map_dropout'])

    def residual_convolution(self, C_1, C_2):
        emb_ent_real, emb_ent_imag_i = C_1
        emb_rel_real, emb_rel_imag_i = C_2
        # Think of x a n image of two complex numbers.
        x = torch.cat([emb_ent_real.view(-1, 1, 1, self.embedding_dim),
                       emb_ent_imag_i.view(-1, 1, 1, self.embedding_dim),
                       emb_rel_real.view(-1, 1, 1, self.embedding_dim),
                       emb_rel_imag_i.view(-1, 1, 1, self.embedding_dim)], 2)

        x = self.conv1(x)
        x = F.relu(self.bn_conv1(x))
        x = self.feature_map_dropout(x)
        x = x.view(x.shape[0], -1)  # reshape for NN.
        x = F.relu(self.bn_conv2(self.fc(x)))
        return torch.chunk(x, 2, dim=1)

    def forward_head_batch(self, *, e1_idx, rel_idx):
        """
        Given a head entity and a relation (h,r), we compute scores for all entities.
        [score(h,r,x)|x \in Entities] => [0.0,0.1,...,0.8], shape=> (1, |Entities|)
        Given a batch of head entities and relations => shape (size of batch,| Entities|)
        """
        # (1)
        # (1.1) Complex embeddings of head entities and apply batch norm.
        emb_head_real = self.bn_ent_real(self.emb_ent_real(e1_idx))
        emb_head_i = self.bn_ent_i(self.emb_ent_i(e1_idx))
        # (1.2) Complex embeddings of relations and apply batch norm.
        emb_rel_real = self.bn_rel_real(self.emb_rel_real(rel_idx))
        emb_rel_i = self.bn_rel_i(self.emb_rel_i(rel_idx))

        # (2) Apply convolution operation on (1).
        C_3 = self.residual_convolution(C_1=(emb_head_real, emb_head_i),
                                        C_2=(emb_rel_real, emb_rel_i))
        a, b = C_3

        # (3) Apply dropout out on (1).
        emb_head_real = self.input_dp_ent_real(emb_head_real)
        emb_head_i = self.input_dp_ent_i(emb_head_i)
        emb_rel_real = self.input_dp_rel_real(emb_rel_real)
        emb_rel_i = self.input_dp_rel_i(emb_rel_i)
        """
        # Remove convolution from the score calculation.
        real_real_real = torch.mm(emb_head_real * emb_rel_real, self.emb_ent_real.weight.transpose(1, 0))
        real_imag_imag = torch.mm(emb_head_real * emb_rel_i, self.emb_ent_i.weight.transpose(1, 0))
        imag_real_imag = torch.mm(emb_head_i * emb_rel_real, self.emb_ent_i.weight.transpose(1, 0))
        imag_imag_real = torch.mm(emb_head_i * emb_rel_i, self.emb_ent_real.weight.transpose(1, 0))
        score = real_real_real + real_imag_imag + imag_real_imag - imag_imag_real
        """
        # (4)
        # (4.1) Hadamard product of (2) and (1).
        # (4.2) Hermitian product of (4.1) and all entities.
        real_real_real = torch.mm(a * emb_head_real * emb_rel_real, self.emb_ent_real.weight.transpose(1, 0))
        real_imag_imag = torch.mm(a * emb_head_real * emb_rel_i, self.emb_ent_i.weight.transpose(1, 0))
        imag_real_imag = torch.mm(b * emb_head_i * emb_rel_real, self.emb_ent_i.weight.transpose(1, 0))
        imag_imag_real = torch.mm(b * emb_head_i * emb_rel_i, self.emb_ent_real.weight.transpose(1, 0))
        score = real_real_real + real_imag_imag + imag_real_imag - imag_imag_real
        return torch.sigmoid(score)

    def forward_head_and_loss(self, e1_idx, rel_idx, targets):
        return self.loss(self.forward_head_batch(e1_idx=e1_idx, rel_idx=rel_idx), targets)

    def init(self):
        xavier_normal_(self.emb_ent_real.weight.data)
        xavier_normal_(self.emb_ent_i.weight.data)
        xavier_normal_(self.emb_rel_real.weight.data)
        xavier_normal_(self.emb_rel_i.weight.data)

    def get_embeddings(self):
        entity_emb = torch.cat((self.emb_ent_real.weight.data, self.emb_ent_i.weight.data), 1)
        rel_emb = torch.cat((self.emb_rel_real.weight.data, self.emb_rel_i.weight.data), 1)
        return entity_emb, rel_emb

    def forward_triples(self, *, e1_idx, rel_idx, e2_idx):
        # (1)
        # (1.1) Complex embeddings of head entities and apply batch norm.
        emb_head_real = self.emb_ent_real(e1_idx)
        emb_head_i = self.emb_ent_i(e1_idx)
        # (1.2) Complex embeddings of relations.
        emb_tail_real = self.emb_ent_real(e2_idx)
        emb_tail_i = self.emb_ent_i(e2_idx)

        # (1.2) Complex embeddings of tail entities.
        emb_rel_real = self.emb_rel_real(rel_idx)
        emb_rel_i = self.emb_rel_i(rel_idx)

        # (2) Apply convolution operation on (1).
        C_3 = self.residual_convolution(C_1=(emb_head_real, emb_head_i),
                                        C_2=(emb_rel_real, emb_rel_i))
        a, b = C_3

        # (3) Apply dropout out on (1).
        emb_head_real = self.input_dp_ent_real(emb_head_real)
        emb_head_i = self.input_dp_ent_i(emb_head_i)
        emb_rel_real = self.input_dp_rel_real(emb_rel_real)
        emb_rel_i = self.input_dp_rel_i(emb_rel_i)
        # (4)
        # (4.1) Hadamard product of (2) and (1).
        # (4.2) Hermitian product of (4.1) and tail entities
        # Compute multi-linear product embeddings
        real_real_real = (a * emb_head_real * emb_rel_real * emb_tail_real).sum(dim=1)
        real_imag_imag = (a * emb_head_real * emb_rel_i * emb_tail_i).sum(dim=1)
        imag_real_imag = (b * emb_head_i * emb_rel_real * emb_tail_i).sum(dim=1)
        imag_imag_real = (b * emb_head_i * emb_rel_i * emb_tail_real).sum(dim=1)
        score = real_real_real + real_imag_imag + imag_real_imag - imag_imag_real
        return torch.sigmoid(score)

    def forward_triples_and_loss(self, e1_idx, rel_idx, e2_idx, targets):
        scores = self.forward_triples(e1_idx=e1_idx, rel_idx=rel_idx, e2_idx=e2_idx)
        return self.loss(scores, targets)
  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-04-30 08:42:53  更:2022-04-30 08:43:52 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/6 18:21:33-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码