项目场景:
深度学习训练后,调用网络预测数据时报错
问题描述
RuntimeError: Can't call numpy() on Tensor that requires grad. Use tensor.detach().numpy() instead.
原因分析:
待转换类型的PyTorch Tensor变量带有梯度,直接将其转换为numpy数据将破坏计算图,因此numpy拒绝进行数据转换,实际上这是对开发者的一种提醒。如果自己在转换数据时不需要保留梯度信息,可以在变量转换之前添加detach() 调用。
解决方案:
y.numpy() ---> y.detach().numpy()
若是数据部署在GPU上时,则修改为
y.cpu().numpy() ---> y.cpu().detach().numpy()
例子如下:
import torch
import math
import matplotlib.pyplot as plt
class Fitting_polynomial(torch.nn.Module):
def __init__(self):
super(Fitting_polynomial, self).__init__()
self.a = torch.nn.Parameter(torch.randn(()))
self.b = torch.nn.Parameter(torch.randn(()))
self.c = torch.nn.Parameter(torch.randn(()))
self.d = torch.nn.Parameter(torch.randn(()))
def forward(self, x):
y = self.a + self.b * x + self.c * x ** 2 + self.d * x ** 3
return y
def string(self):
"""
Just like any class in Python, you can also define custom method on PyTorch modules
"""
return f'y = {self.a.item()} + {self.b.item()} x + {self.c.item()} x^2 + {self.d.item()} x^3'
def plot_poly(self, x):
fig = plt.figure(figsize=(14, 8))
y = self.a + self.b * x + self.c * x ** 2 + self.d * x ** 3
y = y
plt.plot(x, y, label="fitting")
plt.legend()
x = torch.linspace(-math.pi, math.pi, 1000)
y = torch.sin(x)
model = Fitting_polynomial()
criterion = torch.nn.MSELoss(reduction='sum')
optimizer = torch.optim.SGD(model.parameters(), lr=1e-8, momentum=0.9)
dynamic_y = []
for t in range(10000):
y_pred = model(x)
dynamic_y.append(y_pred.detach().numpy())
loss = criterion(y_pred, y)
if t % 2000 == 1999:
print("epoch:{},mse:{}".format(t + 1, loss.item()))
print(f'Result: {model.string()}')
optimizer.zero_grad()
loss.backward()
optimizer.step()
model.plot_poly(x)
RuntimeError Traceback (most recent call last) ~\AppData\Local\Temp\ipykernel_9096\2077543339.py in <cell line: 59>() 57 loss.backward() 58 optimizer.step() —> 59 model.plot_poly(x) 60
RuntimeError: Can’t call numpy() on Tensor that requires grad. Use tensor.detach().numpy() instead.
def plot_poly(self, x):
fig = plt.figure(figsize=(14, 8))
y = self.a + self.b * x + self.c * x ** 2 + self.d * x ** 3
y = y
plt.plot(x, y, label="fitting")
plt.legend()
修改为
def plot_poly(self, x):
fig = plt.figure(figsize=(14, 8))
y = self.a + self.b * x + self.c * x ** 2 + self.d * x ** 3
y = y.detach().numpy()
plt.plot(x, y, label="fitting")
plt.legend()
|