IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> Machine Learning in IDS——scikit-learn -> 正文阅读

[人工智能]Machine Learning in IDS——scikit-learn

作者:recommendNps

Detection Requirement

  • Detect the DGA domains from the corpus

What is the DGA

  • Domain Generating Algorithm
  • using seed(E.g. Date) to generate random domains to escape
    the detection

Training Data

  • train.txt
  • format : domain name,label

Test Data

  • test.txt
  • format : domain name

Output

  • result.txt
  • format : domain name,label

test.py will read train.txt and test.txt, then labeled the domains in test.txt and output them to result.txt


Hint

  • Python3 required
  • domain name length
  • numbers in the domain name
  • entropy of letteres
  • segmentation

安装scikit-learn

pip install scikit-learn

train.txt

ywrbxg.info,dga
ikpjfwkcyzo.info,dga
lncyajfvi.info,dga
...
14g0m9ifidf44qixi2qd1icc.com,dga
1witl72kyutqa1gti1iqjiyjpg.biz,dga
3lwl0q1jnzthz1orq3601k5tgbo.biz,dga
...
google.com,notdga
youtube.com,notdga
tmall.com,notdga
...

课上给出了一个Demo,我放在这里:

from sklearn.ensemble import RandomForestClassifier
import numpy as np

domainlist = []
class Domain:
    def __init__(self, _name, _label, _min, _max, _numip, _ipset):
        self.name = _name
        self.label = _label
        self.ttlmin = _min
        self.ttlmax = _max
        self.numip = _numip
        self.ipset = _ipset
    
    def returnData(self):
        return [self.ttlmin, self.ttlmax, self.numip]
 
    def returnLabel(self):
        if self.label == "good":
            return 0
        else:
            return 1

def initData(filename):
    with open(filename) as f:
        for line in f:
            line = line.strip()
            if line.startswitch("#") or line == "":
                 continue
            tokens = line.split(",")
            name = tokens[0]
            label = tokens[1]
            ttlmin = int(tokens[2])
            ttlmax = int(tokens[3])
            numIP = int(tokens[4])
            ipset = set()
            for i in range(numIP):
                ipset.add(tokens[5+i])
            domainlist.append(Domain(self, name, label, ttlmin, ttlmax, numIP, ipset))

def main():
    initData("baddomaininfo")
    initData("gooddomaininfo")
    featureMatrix = []
    labelList = []
    for item in domainlist:
         featureMatrix.append(item.returnData())
         labelList.append(item.returnLabel())

    clf = RandomForestClassifier(random_state = 0)
    clf.fit(featureMatrix,labelList)

    print(clf.predict([[3600,10000,3]]))
    print(clf.predict([[3600,3600,1]]))
    print(clf.predict([[100,100,3]]))
    print(clf.predict([[100,100,1]]))

if __name__ == '__main__':
    main()

接下来我们就以Demo为基础
按照题目给出的提示来尝试一下吧

domain name length

这个特征比较简单

def initData(filename):
    with open(filename) as f:
        for line in f:
            line = line.strip()
            if line.startswitch("#") or line == "":
                 continue
            tokens = line.split(",")
            name = tokens[0]
            length = len(name)
            label = tokens[1]
            domainlist.append(Domain(name,label,length))

numbers in the domain name

我们可以设定一个专门的函数
用于计算name中的数字个数

def cal_num(str):
    num = 0
    for i in str:
        if i.isdigit():
            num += 1
    return num

num = cal_num(name)

entropy of letteres

我们可以参考这篇blog中的代码

import math
 
def cal_entropy(str):
    h = 0.0
    sumLetter = 0
    letter = [0] * 26
    str = str.lower()
    for i in range(len(str)):
        if str[i].isalpha():
            letter[ord(str[i]) - ord('a')] += 1
            sumLetter += 1
    for i in range(26):
        p = 1.0 * letter[i] / sumLetter
        if p > 0:
            h += -(p * math.log(p, 2))
    return h

segmentation

def cal_seg(str):
    num = 0
    for i in str:
        if i == '.':
            num += 1
    return num

输出ML结果

我们需要从train.txt文件中,读出domain,将特征提取出来存放到列表中,用于训练模型
我们需要从test.txt文件中,读出domain,将特征提取出来存放到列表中,根据特征预测domain的分类
特征提取我们可以复用initData
initData需要按照我们的需求稍微修改一下

def initData(filename,domainlist):
    with open(filename) as f:
        for line in f:
            line = line.strip()
            if line.startswith("#") or line == "":
                 continue
            tokens = line.split(",")
            name = tokens[0]
            if len(tokens) > 1:  # train.txt
                label = tokens[1]
            else                 # test.txt
                label = "?"
            length = len(name)
            num = cal_num(name)
            entropy = cal_entropy(name)
            domainlist.append(Domain(name,label,length,num,entropy))

def main():
    domainlist1 = []
    initData("train",domainlist1)
    ...
    domainlist2 = []
    initData("test.txt",domainlist2)
    with open("result.txt","w") as f:
        for i in domainlist2:
            f.write(i.name)
            f.write(",")
            if clf.predict([i.returnData()])[0] == 0:
                f.write("notdga")
            else:
                f.write("dga")
            f.write("\n")
   ...

完整代码

from sklearn.ensemble import RandomForestClassifier
import numpy as np
import math

class Domain:
    def __init__(self, _name, _label, _length, _num, _entropy):
        self.name = _name
        self.label = _label
        self.length = _length
        self.num = _num
        self.entropy = _entropy
    
    def returnData(self):
        return [self.length, self.num, self.entropy]
 
    def returnLabel(self):
        if self.label == "dga":
            return 1
        else:
            return 0

def cal_num(str):
    num = 0
    for i in str:
        if i.isdigit():
            num += 1
    return num

def cal_seg(str):
    num = 0
    for i in str:
        if i == '.':
            num += 1
    return num

def cal_entropy(str):
    h = 0.0
    sumLetter = 0
    letter = [0] * 26
    str = str.lower()
    for i in range(len(str)):
        if str[i].isalpha():
            letter[ord(str[i]) - ord('a')] += 1
            sumLetter += 1
    for i in range(26):
        p = 1.0 * letter[i] / sumLetter
        if p > 0:
            h += -(p * math.log(p, 2))
    return h

def initData(filename,domainlist):
    with open(filename) as f:
        for line in f:
            line = line.strip()
            if line.startswith("#") or line == "":
                 continue
            tokens = line.split(",")
            name = tokens[0]
            if len(tokens) > 1:
                label = tokens[1]
            else:
                label = "?"
            length = len(name)
            num = cal_num(name)
            entropy = cal_entropy(name)
            # seg = cal_seg(name)
            domainlist.append(Domain(name, label, length, num, entropy))

def main():
    domainlist1 = []
    initData("train.txt",domainlist1)
    featureMatrix = []
    labelList = []
    for item in domainlist1:
         featureMatrix.append(item.returnData())
         labelList.append(item.returnLabel())

    clf = RandomForestClassifier(random_state = 0)
    clf.fit(featureMatrix,labelList)

    domainlist2 = []
    initData("test.txt",domainlist2)
    with open("result.txt","w") as f:
        for i in domainlist2:
            f.write(i.name)
            f.write(",")
            if clf.predict([i.returnData()])[0] == 0:
                f.write("notdga")
            else:
                f.write("dga")
            f.write("\n")

if __name__ == '__main__':
    main()

测试方法

python3 test.py
  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-05-01 15:44:16  更:2022-05-01 15:45:04 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/6 18:08:09-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码