IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> cgan实战--pytorch -> 正文阅读

[人工智能]cgan实战--pytorch

cgan结构图

在这里插入图片描述

要点

  1. 原始gan网络无法控制输出什么图片,因此作者想通过添加一些额外的信息来控制模型输出指定的结果
  2. 添加的这个额外信息既要输入生成器也要输入判别器
    在这里插入图片描述

代码

import numpy as np
import torchvision.transforms as transforms
from torchvision.utils import save_image
from torch.utils.data import DataLoader
from torchvision import datasets
from torch.autograd import Variable
import torch.nn as nn
import torch

n_epoches=300
batch_size=32
lr=0.0002
b1=0.5
b2=0.999
latent_dim=100
n_classes=4
img_size=112
channels=3
sample_interval=400

img_shape = (channels,img_size,img_size)
cuda = True if torch.cuda.is_available() else False

class Generator(nn.Module):
    def __init__(self):
        super(Generator, self).__init__()

        self.label_emb = nn.Embedding(n_classes,n_classes)

        def block(in_feat, out_feat, normalize=True):
            layers = [nn.Linear(in_feat, out_feat)]
            if normalize:
                layers.append(nn.BatchNorm1d(out_feat, 0.8))
            layers.append(nn.LeakyReLU(0.2, inplace=True))
            return layers

        self.model = nn.Sequential(
            *block(latent_dim + n_classes, 128, normalize=False),
            *block(128, 256),
            *block(256, 512),
            *block(512, 1024),
            nn.Linear(1024, int(np.prod(img_shape))),
            nn.Tanh()
        )

    def forward(self, noise, labels):
        # Concatenate label embedding and image to produce input
        gen_input = torch.cat((self.label_emb(labels), noise), -1)
        img = self.model(gen_input)
        img = img.view(img.size(0), *img_shape)
        return img
class Discriminator(nn.Module):
    def __init__(self):
        super(Discriminator, self).__init__()

        self.label_embedding = nn.Embedding(n_classes,n_classes)

        self.model = nn.Sequential(
            nn.Linear(n_classes + int(np.prod(img_shape)), 512),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Linear(512, 512),
            nn.Dropout(0.4),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Linear(512, 512),
            nn.Dropout(0.4),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Linear(512, 1),
        )

    def forward(self, img, labels):
        # Concatenate label embedding and image to produce input
        d_in = torch.cat((img.view(img.size(0), -1), self.label_embedding(labels)), -1)
        validity = self.model(d_in)
        return validity
# 定义损失函数
adversarial_loss = torch.nn.MSELoss()

# 初始化生成器和判别器
generator = Generator()
discriminator = Discriminator()

if cuda:
    generator.cuda()
    discriminator.cuda()
    adversarial_loss.cuda()
    
data_tramsform={
    'cgan':transforms.Compose(
        [transforms.RandomResizedCrop(112),
         transforms.RandomHorizontalFlip(),
         transforms.ToTensor(),
         transforms.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5))
         ]
    )
}

image_path=r"数据集地址"

train_dataset=datasets.ImageFolder(root=os.image_path,transform=data_tramsform['cgan'])
optimizer_G = torch.optim.Adam(generator.parameters(), lr=lr, betas=(b1,b2))
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=lr, betas=(b1,b2))
train_loader=torch.utils.data.DataLoader(train_dataset,batch_size=batch_size,shuffle=True)

FloatTensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor
LongTensor = torch.cuda.LongTensor if cuda else torch.LongTensor

def sample_image(n_row, batches_done):
    """产生图片"""
    # Sample noise
    z = Variable(FloatTensor(np.random.normal(0, 1, (n_row ** 2,latent_dim))))
    # Get labels ranging from 0 to n_classes for n rows
    labels = np.array([num for _ in range(n_row) for num in range(n_row)])
    labels = Variable(LongTensor(labels))
    gen_imgs = generator(z, labels)
    save_image(gen_imgs.data, r"保存地址/%d.png" % batches_done, nrow=n_row, normalize=True)

for epoch in range(n_epoches):
    for i,data in enumerate(train_loader):
        imgs,labels=data

        batch_size = imgs.shape[0]

        # 定义标签
        valid = Variable(FloatTensor(batch_size, 1).fill_(1.0), requires_grad=False)
        fake = Variable(FloatTensor(batch_size, 1).fill_(0.0), requires_grad=False)

        # 输入
        real_imgs = Variable(imgs.type(FloatTensor))
        labels = Variable(labels.type(LongTensor))
		# 开始训练G
        optimizer_G.zero_grad()

        # 噪声和标签作为输入
        z = Variable(FloatTensor(np.random.normal(0, 1, (batch_size,latent_dim))))
        gen_labels = Variable(LongTensor(np.random.randint(0,n_classes, batch_size)))
        # 生成器产生图片
        gen_imgs = generator(z, gen_labels)

        # 计算损失
        validity = discriminator(gen_imgs, gen_labels)
        g_loss = adversarial_loss(validity, valid)

        g_loss.backward()
        optimizer_G.step()

        # 训练判别器

        optimizer_D.zero_grad()

        # 真实图片的损失
        validity_real = discriminator(real_imgs, labels)
        d_real_loss = adversarial_loss(validity_real, valid)

        # 生成图片的损失
        validity_fake = discriminator(gen_imgs.detach(), gen_labels)
        d_fake_loss = adversarial_loss(validity_fake, fake)

        # 总损失
        d_loss = (d_real_loss + d_fake_loss) / 2

        d_loss.backward()
        optimizer_D.step()
        print(
            "[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]"
            % (epoch,n_epoches, i, len(train_loader), d_loss.item(), g_loss.item())
        )

        batches_done = epoch * len(train_loader) + i
        if batches_done % sample_interval == 0:
            sample_image(n_row=4, batches_done=batches_done) # n_row根据自己的实际情况

生成器网络详解

Generator(
(label_emb): Embedding(4, 4)
(model): Sequential(
(0): Linear(in_features=104, out_features=128, bias=True)
(1): LeakyReLU(negative_slope=0.2, inplace=True)
(2): Linear(in_features=128, out_features=256, bias=True)
(3): BatchNorm1d(256, eps=0.8, momentum=0.1, affine=True, track_running_stats=True)
(4): LeakyReLU(negative_slope=0.2, inplace=True)
(5): Linear(in_features=256, out_features=512, bias=True)
(6): BatchNorm1d(512, eps=0.8, momentum=0.1, affine=True, track_running_stats=True)
(7): LeakyReLU(negative_slope=0.2, inplace=True)
(8): Linear(in_features=512, out_features=1024, bias=True)
(9): BatchNorm1d(1024, eps=0.8, momentum=0.1, affine=True, track_running_stats=True)
(10): LeakyReLU(negative_slope=0.2, inplace=True)
(11): Linear(in_features=1024, out_features=37632, bias=True)
(12): Tanh()
)
)

判别器网络详解

Discriminator(
(label_embedding): Embedding(4, 4)
(model): Sequential(
(0): Linear(in_features=37636, out_features=512, bias=True)
(1): LeakyReLU(negative_slope=0.2, inplace=True)
(2): Linear(in_features=512, out_features=512, bias=True)
(3): Dropout(p=0.4, inplace=False)
(4): LeakyReLU(negative_slope=0.2, inplace=True)
(5): Linear(in_features=512, out_features=512, bias=True)
(6): Dropout(p=0.4, inplace=False)
(7): LeakyReLU(negative_slope=0.2, inplace=True)
(8): Linear(in_features=512, out_features=1, bias=True)
)
)

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-05-01 15:44:16  更:2022-05-01 15:45:24 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/26 8:39:43-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码