IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 朴素贝叶斯代码(Python) -> 正文阅读

[人工智能]朴素贝叶斯代码(Python)

朴素贝叶斯

使用朴素贝叶斯,特征向量为离散型
x1,x2是两个特征向量,Y是类别

123456789101112131415
x1111112222233333
x2SMMSSSMMLLLMMLL
Y-1-111-1-1-11111111-1

手算过程见文末参考博客

思想:

1. 创建数据集
2. 计算各类概率
2.1 算p(y = -1),p(y = 1), 即算各类概率
2.2 根据输入特征向量x = (2, 'S'), 计算p(x向量 | y) = 累乘 p(xi | y)
3. 预测:给一个特征向量,按照2中算出的值相乘,各类概率大的获胜

代码:

def createDataSet():
    dataSet = [[1, 'S', -1],
               [1, 'M', -1],
               [1, 'M', 1],
               [1, 'S', 1],
               [1, 'S', -1],
               [2, 'S', -1],
               [2, 'M', -1],
               [2, 'M', 1],
               [2, 'L', 1],
               [2, 'L', 1],
               [3, 'L', 1],
               [3, 'M', 1],
               [3, 'M', 1],
               [3, 'L', 1],
               [3, 'L', -1]]
    labels = ['x1', 'x2', 'y']
    return dataSet, labels

# 统计yi的个数
def typeCount(typeList, t):
    cnt = 0
    for tL in typeList:
        if tL == t:
            cnt += 1
    return cnt

# 计算Y=-1或1的条件下,X等于某值 个数
def featCount(dataSet, i, feat, y):
    cnt = 0
    #print(i, feat, y)
    for row in dataSet:
        if row[i] == feat and row[-1] == y:
            cnt += 1
    return cnt

def calcBayes(dataSet):
    # 以 x = (2, 'S') 为例
    X = [2 , 'S']
    
    lenDataSet = len(dataSet)
    typeList = [row[-1] for row in dataSet] 
    typeSet = set(typeList) # 类别集合
    print(typeList, typeSet)
    typeLen = len(typeSet)
    # 遍历一类 t=1; t=-1
    pList = [] # 记录预计 各类类别 概率
    for t in typeSet:
        yNum = typeCount(typeList, t)# 计算yi的个数
        print(f'{t} num =',yNum)
        py = yNum / lenDataSet
        print(f'P(Y = {t}) =', py)
        pSum = py
        # 对每个特征分量计数
        for i in range(len(X)):
            xiNum = featCount(dataSet, i, X[i], t) # 统计Y条件下 Xi取相应特征 的数量
            print(f'特征{X[i]} num =',xiNum)
            # 条件概率P{X = xi | Y = yi}
            pxy = xiNum / yNum
            print(f'条件概率 =', pxy)
            pSum *= pxy
        pList.append(pSum)
    #print(pList)
    return pList, typeSet

# 就是找最大的概率,记录下标
def predict(pList, typeList):
    for i in range(len(pList)):
        if pList[i] == max(pList):
            print('*'*50)
            print(f'预测类 为 = {typeList[i]}')
            
if __name__ == '__main__':
    dataSet, labels = createDataSet()
    pList, typeSet = calcBayes(dataSet)
    predict(pList, list(typeSet)) 

参考博客

后序可能会写其他贝叶斯和 处理连续型特征向量,占个坑~

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-05-01 15:44:16  更:2022-05-01 15:46:56 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/26 8:22:24-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码