IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 【CNN预测】基于麻雀搜索算法优化CNN实现数据回归预测含Matlab源码 -> 正文阅读

[人工智能]【CNN预测】基于麻雀搜索算法优化CNN实现数据回归预测含Matlab源码

1 简介

SSA是一种模仿麻雀捕猎与反捕猎动作的新型智能优化算法,种群成员包括发现者、跟随者和侦察者。种群中适应度较好的发现者将会在搜寻过程中最先收集到食物;有一部分跟随者始终监视发现者,若有跟随者发现种群中有麻雀已经找到更好的食物,这部分跟随者会立即去争夺食物;若负责侦察的麻雀一直处在当前的最优预测位置上,那么只需逃离到当前区域周围的某个地方;若侦察的麻雀并不处在当前最优预测位置上,则寻找当前最优预测区域周围的地方停靠。

2 部分代码

?function [FoodFitness,FoodPosition,Convergence_curve]=SSA(N,Max_iter,lb,ub,dim,fobj)if size(ub,1)==1    ub=ones(dim,1)*ub;    lb=ones(dim,1)*lb;endConvergence_curve = zeros(1,Max_iter);%Initialize the positions of salpsSalpPositions=initialization(N,dim,ub,lb);FoodPosition=zeros(1,dim);FoodFitness=inf;%calculate the fitness of initial salpsfor i=1:size(SalpPositions,1)    SalpFitness(1,i)=fobj(SalpPositions(i,:));end[sorted_salps_fitness,sorted_indexes]=sort(SalpFitness);for newindex=1:N    Sorted_salps(newindex,:)=SalpPositions(sorted_indexes(newindex),:);endFoodPosition=Sorted_salps(1,:);FoodFitness=sorted_salps_fitness(1);%Main loopl=2; % start from the second iteration since the first iteration was dedicated to calculating the fitness of salpswhile l<Max_iter+1    c1 = 2*exp(-(4*l/Max_iter)^2); % Eq. (3.2) in the paper    for i=1:size(SalpPositions,1)        SalpPositions= SalpPositions';        if i<=N/2            for j=1:1:dim                c2=rand();                c3=rand();                %%%%%%%%%%%%% % Eq. (3.1) in the paper %%%%%%%%%%%%%%                if c3<0.5                     SalpPositions(j,i)=FoodPosition(j)+c1*((ub(j)-lb(j))*c2+lb(j));                else                    SalpPositions(j,i)=FoodPosition(j)-c1*((ub(j)-lb(j))*c2+lb(j));                end                %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%            end        elseif i>N/2 && i<N+1            point1=SalpPositions(:,i-1);            point2=SalpPositions(:,i);            SalpPositions(:,i)=(point2+point1)/2; % % Eq. (3.4) in the paper        end        SalpPositions= SalpPositions';    end    for i=1:size(SalpPositions,1)        Tp=SalpPositions(i,:)>ub';Tm=SalpPositions(i,:)<lb';SalpPositions(i,:)=(SalpPositions(i,:).*(~(Tp+Tm)))+ub'.*Tp+lb'.*Tm;        SalpFitness(1,i)=fobj(SalpPositions(i,:));        if SalpFitness(1,i)<FoodFitness            FoodPosition=SalpPositions(i,:);            FoodFitness=SalpFitness(1,i);         end    end    Convergence_curve(l)=FoodFitness;    l = l + 1;end?

3 仿真结果

4 参考文献

[1]陈彩虹,王诚. 基于CNN深度算法改进及故障预测研究[J]. 计算机技术与发展, 2020, 30(10):6.

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。

?

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-05-04 07:27:21  更:2022-05-04 07:27:53 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/4 15:20:46-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码