IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> BN/Batch Norm中的滑动平均/移动平均/Moving Average -> 正文阅读

[人工智能]BN/Batch Norm中的滑动平均/移动平均/Moving Average

BN中的滑动平均是怎么做的

在这里插入图片描述
训练过程中的每一个batch都会进行滑动平均的计算[1]:

moving_mean = moving_mean * momentum + batch_mean * (1 - momentum)
moving_var = moving_var * momentum + batch_var * (1 - momentum)

式中的 momentum 为动量参数,在 TF/Keras 中,该值为0.99,在 Pytorch 中,这个值为0.9

初始值,moving_mean=0,moving_var=1,相当于标准正态分布,当然,理论上初始化为任意值都可以

在实际的代码中,滑动平均的计算会以一种更高效的方式,但实际上是等价的:

moving_mean -= (moving_mean - batch_mean) * (1 - momentum)
moving_var -= (moving_var - batch_var) * (1 - momentum)

滑动平均中 Momentum 参数的影响

整个训练阶段滑动平均的过程,(moving_mean, moving_var) 参数实际上是从正态分布,向训练集真实分布靠拢的一个过程。

理论上,训练步数越长是会越靠近真实分布的,实际上,因为每个batch并不能代表整个训练集的分布,所以最后的值是在真实分布附近波动。

一个更小的 momentum 值,意味着更大的更新步长,对应着滑动平均值更快的变化,能更快地向真实值靠拢,但也意味着更大的波动性,更大的 momentum 值则相反。

训练阶段使用的是 (batch_mean, batch_var),所以滑动平均并不会影响训练阶段的结果,而是影响预测阶段的效果。关于BN在训练和测试时的差别可参考[2] 。

如果训练步数很短,一个大的 momentum 值可能会导致 (moving_mean, moving_var) 还没有靠拢到真实分布就停止了,这样对预测阶段的影响是很大的,也会是欠拟合的一个状态。如果训练步数足够,一个大的 momentum 值对应小的更新步长,最后的滑动平均的值是会更接近真实值的。

如果batch size 比较小,那单个batch的 (batch_mean, batch_var) 和真实分布会比较大,此时滑动平均单次更新的步长就不应过大,适用一个大的 momentum 值,反之可类比分析。

BN 前向过程代码实现

def batchnorm_forward(x, gamma, beta, bn_param):
    """
    Forward pass for batch normalization.
    During training the sample mean and (uncorrected) sample variance are
    computed from minibatch statistics and used to normalize the incoming data.
    During training we also keep an exponentially decaying running mean of the
    mean and variance of each feature, and these averages are used to normalize
    data at test-time.
    At each timestep we update the running averages for mean and variance using
    an exponential decay based on the momentum parameter:
    running_mean = momentum * running_mean + (1 - momentum) * sample_mean
    running_var = momentum * running_var + (1 - momentum) * sample_var
    
    Input:
    - x: Data of shape (N, D)
    - gamma: Scale parameter of shape (D,)
    - beta: Shift paremeter of shape (D,)
    - bn_param: Dictionary with the following keys:
      - mode: 'train' or 'test'; required
      - eps: Constant for numeric stability
      - momentum: Constant for running mean / variance.
      - running_mean: Array of shape (D,) giving running mean of features
      - running_var Array of shape (D,) giving running variance of features
    Returns a tuple of:
    - out: of shape (N, D)
    - cache: A tuple of values needed in the backward pass
    """
    mode = bn_param['mode']
    eps = bn_param.get('eps', 1e-5)
    momentum = bn_param.get('momentum', 0.9)

    N, D = x.shape
    running_mean = bn_param.get('running_mean', np.zeros(D, dtype=x.dtype))
    running_var = bn_param.get('running_var', np.ones(D, dtype=x.dtype))

    if mode == 'train':
        sample_mean = x.mean(axis=0)
        sample_var = x.var(axis=0)
        
        running_mean = momentum * running_mean + (1 - momentum) * sample_mean
        running_var = momentum * running_var + (1 - momentum) * sample_var
        
        std = np.sqrt(sample_var + eps)
        x_centered = x - sample_mean
        x_norm = x_centered / std
        out = gamma * x_norm + beta
        
        cache = (x_norm, x_centered, std, gamma)
        
    elif mode == 'test':
        x_norm = (x - running_mean) / np.sqrt(running_var + eps)
        out = gamma * x_norm + beta
    
    else:
        raise ValueError('Invalid forward batchnorm mode "%s"' % mode)

    # Store the updated running means back into bn_param
    bn_param['running_mean'] = running_mean
    bn_param['running_var'] = running_var

    return out, cache

注:代码参考[3],原代码中 running_var 也初始化是 np.zeros,本文做了修改。

running_mean和 running_var 的初始值为正态分布参数值,可参考 Pytorch 代码中的 _NormBase 类

参考:

[1] https://jiafulow.github.io/blog/2021/01/29/moving-average-in-batch-normalization/

[2] https://zhuanlan.zhihu.com/p/61725100

[3] https://towardsdatascience.com/implementing-batch-normalization-in-python-a044b0369567

[4] 题图参考:https://kaixih.github.io/batch-norm/

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-05-05 11:19:11  更:2022-05-05 11:19:43 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/4 15:08:03-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码