IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 卡尔曼滤波的Python实现 -> 正文阅读

[人工智能]卡尔曼滤波的Python实现

# !/usr/bin/env python
# -*- coding: utf-8 -*-
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

font = {'family': 'SimSun',  # 宋体
        # 'weight': 'bold',  # 加粗
        'size': '10.5'  # 五号
        }
plt.rc('font', **font)
plt.rc('axes', unicode_minus=False)


# plt.rcParams['figure.facecolor'] = "#FFFFF0"  # 设置窗体颜色
# plt.rcParams['axes.facecolor'] = "#FFFFF0"  # 设置绘图区颜色

class Kf_Params:
    B = 0  # 外部输入为0
    u = 0  # 外部输入为0
    K = float('nan')  # 卡尔曼增益无需初始化
    z = float('nan')  # 这里无需初始化,每次使用kf_update之前需要输入观察值z
    P = np.diag(np.ones(4))  # 初始P设为0 ??? zeros(4, 4)

    # 初始状态:函数外部提供初始化的状态,本例使用观察值进行初始化,vx,vy初始为0
    x = []
    G = []

    # 状态转移矩阵A
    # 和线性系统的预测机制有关,这里的线性系统是上一刻的位置加上速度等于当前时刻的位置,而速度本身保持不变
    A = np.eye(4) + np.diag(np.ones((1, 2))[0, :], 2)

    # 预测噪声协方差矩阵Q:假设预测过程上叠加一个高斯噪声,协方差矩阵为Q
    # 大小取决于对预测过程的信任程度。比如,假设认为运动目标在y轴上的速度可能不匀速,那么可以把这个对角矩阵
    # 的最后一个值调大。有时希望出来的轨迹更平滑,可以把这个调更小
    Q = np.diag(np.ones(4)) * 0.1

    # 观测矩阵H:z = H * x
    # 这里的状态是(坐标x, 坐标y, 速度x, 速度y),观察值是(坐标x, 坐标y),所以H = eye(2, 4)
    H = np.eye(2, 4)

    # 观测噪声协方差矩阵R:假设观测过程上存在一个高斯噪声,协方差矩阵为R
    # 大小取决于对观察过程的信任程度。比如,假设观测结果中的坐标x值常常很准确,那么矩阵R的第一个值应该比较小
    R = np.diag(np.ones(2)) * 0.1


def kf_init(px, py, vx, vy):
    # 本例中,状态x为(坐标x, 坐标y, 速度x, 速度y),观测值z为(坐标x, 坐标y)
    kf_params = Kf_Params()
    kf_params.B = 0
    kf_params.u = 0
    kf_params.K = float('nan')
    kf_params.z = float('nan')
    kf_params.P = np.diag(np.ones(4))
    kf_params.x = [px, py, vx, vy]
    kf_params.G = [px, py, vx, vy]
    kf_params.A = np.eye(4) + np.diag(np.ones((1, 2))[0, :], 2)
    kf_params.Q = np.diag(np.ones(4)) * 0.1
    kf_params.H = np.eye(2, 4)
    kf_params.R = np.diag(np.ones(2)) * 0.1
    return kf_params


def kf_update(kf_params):
    # 以下为卡尔曼滤波的五个方程(步骤)
    a1 = np.dot(kf_params.A, kf_params.x)
    a2 = kf_params.B * kf_params.u
    x_ = np.array(a1) + np.array(a2)

    b1 = np.dot(kf_params.A, kf_params.P)
    b2 = np.dot(b1, np.transpose(kf_params.A))
    p_ = np.array(b2) + np.array(kf_params.Q)

    c1 = np.dot(p_, np.transpose(kf_params.H))
    c2 = np.dot(kf_params.H, p_)
    c3 = np.dot(c2, np.transpose(kf_params.H))
    c4 = np.array(c3) + np.array(kf_params.R)
    c5 = np.linalg.matrix_power(c4, -1)
    kf_params.K = np.dot(c1, c5)

    d1 = np.dot(kf_params.H, x_)
    d2 = np.array(kf_params.z) - np.array(d1)
    d3 = np.dot(kf_params.K, d2)
    kf_params.x = np.array(x_) + np.array(d3)

    e1 = np.dot(kf_params.K, kf_params.H)
    e2 = np.dot(e1, p_)
    kf_params.P = np.array(p_) - np.array(e2)

    kf_params.G = x_
    return kf_params


def accuracy(predictions, labels):
    return np.array(predictions) - np.array(labels)


if __name__ == '__main__':
    # 真实路径
    path = './9.xlsx'
    data_A = pd.read_excel(path, header=None)
    data_A_x = list(data_A.iloc[::, 0])
    data_A_y = list(data_A.iloc[::, 1])
    A = np.array(list(zip(data_A_x, data_A_y)))

    # plt.subplot(131)
    plt.figure()
    plt.plot(data_A_x, data_A_y, 'b-+')
    # plt.title('实际的真实路径')

    # 检测到的路径
    path = './10.xlsx'
    data_B = pd.read_excel(path, header=None)
    data_B_x = list(data_B.iloc[::, 0])
    data_B_y = list(data_B.iloc[::, 1])
    B = np.array(list(zip(data_B_x, data_B_y)))

    # plt.subplot(132)
    plt.plot(data_B_x, data_B_y, 'r-+')
    # plt.title('检测到的路径')

    # 卡尔曼滤波
    kf_params_record = np.zeros((len(data_B), 4))
    kf_params_p = np.zeros((len(data_B), 4))
    t = len(data_B)
    kalman_filter_params = kf_init(data_B_x[0], data_B_y[0], 0, 0)
    for i in range(t):
        if i == 0:
            kalman_filter_params = kf_init(data_B_x[i], data_B_y[i], 0, 0)  # 初始化
        else:
            # print([data_B_x[i], data_B_y[i]])
            kalman_filter_params.z = np.transpose([data_B_x[i], data_B_y[i]])  # 设置当前时刻的观测位置
            kalman_filter_params = kf_update(kalman_filter_params)  # 卡尔曼滤波
        kf_params_record[i, ::] = np.transpose(kalman_filter_params.x)
        kf_params_p[i, ::] = np.transpose(kalman_filter_params.G)

    kf_trace = kf_params_record[::, :2]
    kf_trace_1 = kf_params_p[::, :2]

    # plt.subplot(133)
    plt.plot(kf_trace[::, 0], kf_trace[::, 1], 'g-+')
    plt.plot(kf_trace_1[1:26, 0], kf_trace_1[1:26, 1], 'm-+')
    legend = ['CMA最佳路径数据集', '检测路径', '卡尔曼滤波结果', '预测路径']
    plt.legend(legend, loc="best", frameon=False)
    plt.title('卡尔曼滤波后的效果')
    plt.savefig('result.svg', dpi=600)
    plt.show()
    # plt.close()

    p = accuracy(kf_trace, A)
    print(p)

?

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-05-05 11:19:11  更:2022-05-05 11:19:55 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/4 15:00:14-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码