IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> ELMo:Embedding from Language Model -> 正文阅读

[人工智能]ELMo:Embedding from Language Model

基本概念

字符编码层

字符编码层主要对字符进行编码,经过多个卷积层和池化层,再经过多个高速链路层和投影层,作为词的Embedding送入后续的层中。
在这里插入图片描述

inputs先假设为[batch_size, seq_len, w_dim],其中batch_size代表句子个数维度,也可以当成batch维度,seq_len表示最大句子长度,w_dim表示最大词长度,默认为50。

实现代码:

# 字符编码层
# shape:(batch_size, seq_len, w_dim)=>(batch_size, seq_len, p_dim)
class CharEncoder(layers.Layer):
    # num_chars表示数据有多少不同的字符,也就是字符表(类似词汇表)的大小
    # c_dim表示每个字符映射为c_dim维的向量
    # num_highways表示通过的高速网络数
    # p_dim表示投影层输出的维度
    def __init__(self, w_dim, num_chars, c_dim, p_dim):
        super(CharEncoder, self).__init__()
        self.w_dim = w_dim
        # multi-scale CNN

        # 字符嵌入层,将单个字符映射为向量
        # w_dim表示每个单词映射成向量的维数
        self.embedding = layers.Embedding(num_chars, c_dim, trainable=True)
        # 七个一维卷积层,分别在序列上做卷积
        # 卷积核大小kernel_size=[1, 2, 3, 4, 5, 6, 7],通道大小filters=[32, 64, 128, 256, 512, 1024, 2048]
        filters_list = [16, 16, 32, 64]
        kernel_size_list = [1, 2, 3, 4]
        conv1d_list = zip(filters_list, kernel_size_list)
        self.conv1ds = [layers.Conv1D(filters, kernel_size) for filters, kernel_size in conv1d_list]
        # 七个一维最大池化层,分别对卷积后的序列进行最大池化
        # 池化矩阵大小pool_size=[c_dim-1+1, c_dim-2+1, ..., c_dim-7+1]
        pool_size_list = [w_dim, w_dim - 1, w_dim - 2, w_dim - 3]
        self.maxpool1ds = [layers.MaxPool1D(pool_size) for pool_size in pool_size_list]

        num_activations = 4
        self.activations = [layers.Activation("tanh") for _ in range(num_activations)]
        # Highway

        # 用两个Dense层来实现高速层
        units = sum(filters_list)
        self.dense1 = layers.Dense(units, activation="sigmoid")
        self.dense2 = layers.Dense(units, activation="relu")

        # Projection

        # 使用一个Dense层来实现投影层
        self.dense3 = layers.Dense(p_dim, activation="relu")

    def __call__(self, x):
        batch_size, seq_len = tf.shape(x)[0], tf.shape(x)[1]
        # Reshape
        # shape:(batch_size, seq_len, w_dim)=>(batch_size * seq_len, w_dim)
        x = tf.reshape(x, (-1, self.w_dim))
        # 字符嵌入
        # shape:(batch_size * seq_len, w_dim)=>(batch_size * seq_len, w_dim, c_dim)
        embedding_output = self.embedding(x)

        # 分别进行卷积
        # shape1:(batch_size * seq_len, w_dim, c_dim)=>(batch_size * seq_len, w_dim1, c_dim1)
        # ...
        # shape7:(batch_size * seq_len, w_dim7, c_dim7)=>(batch_size * seq_len, w_dim7, c_dim7)
        conv1d_outputs = [conv1d(embedding_output) for conv1d in self.conv1ds]
        # print(conv1d_outputs[0].shape)
        # 分别进行池化
        # shape1:(batch_size * seq_len, w_dim1, c_dim1)=>(batch_size * seq_len, 1, c_dim1)
        # ...
        # shape7:(batch_size * seq_len, w_dim7, c_dim7)=>(batch_size * seq_len, 1, c_dim7)
        maxpool1d_outputs = [maxpool1d(conv1d_outputs[i]) for i, maxpool1d in enumerate(self.maxpool1ds)]
        # 激活函数
        maxpool1d_outputs = [activation(maxpool1d_outputs[i]) for i, activation in enumerate(self.activations)]
        # 降低维度
        # shape:(batch_size * seq_len, 1, c_dim)=>(batch_size * seq_len, c_dim)
        maxpool1d_outputs = [tf.squeeze(maxpool1d_output, axis=1) for maxpool1d_output in maxpool1d_outputs]
        # Concat
        # shape:=>(batch_size * seq_len, c_dim1+c_dim2+...+c_dim7)
        output = tf.concat(maxpool1d_outputs, axis=-1)
        # Reshape
        # shape:(batch_size * seq_len, c_dim1+c_dim2+...+c_dim7)=>(batch_size, seq_len, c_dim1+c_dim2+...+c_dim7)
        output = tf.reshape(output, (batch_size, seq_len, -1))

        # 通过多条高速网络
        # shape:(batch_size, seq_len, c_dim1+c_dim2+...+c_dim7)=>(batch_size, seq_len, c_dim1+c_dim2+...+c_dim7)
        num_highways = 2
        for _ in range(num_highways):
            carry_gate = self.dense1(output)
            transform_gate = self.dense2(output)
            output = carry_gate * transform_gate + (1 - carry_gate) * output

        # 通过投影层
        # shape:(batch_size, seq_len, c_dim1+c_dim2+...+c_dim7)=>(batch_size, seq_len, p_dim)
        output = self.dense3(output)

        return output

BiLMs层

ELMo主要建立在BiLMs(双向语言模型)上,结构如下:
在这里插入图片描述
h表示LSTM单元的维度,用h_dim表示。在每一层结束后还需要一个Linear层将维度从h_dim映射为p_dim,然后再输入到下一层。最后将每一个层的输出和Embedding层的输入进行连接,得到[l+1, batch_size, seq_len, 2*p_dim],其中Embedding层的输出需要复制一份,以保持和BiLMs每层的输出维度一致。

实现代码,以两层BiLMs为例:

# BiLMs层
# shape:(batch_size, seq_len, p_dim)=>(3, batch_size, seq_len, 2 * p_dim)
class BiLMs(layers.Layer):
    # h_dim表示LSTM内部的维数
    # p_dim表示CharEncoder中投影层映射的维数
    def __init__(self, p_dim, h_dim):
        super(BiLMs, self).__init__()
        # 使用两个单向LSTM来代替一个双向LSTM
        self.lstm_fw1 = layers.LSTM(h_dim, return_sequences=True)
        self.lstm_bw1 = layers.LSTM(h_dim, return_sequences=True, go_backwards=True)
        self.dense_fw1 = layers.TimeDistributed(layers.Dense(p_dim))
        self.dense_bw1 = layers.TimeDistributed(layers.Dense(p_dim))
        # 一共有两层
        self.lstm_fw2 = layers.LSTM(h_dim, return_sequences=True)
        self.lstm_bw2 = layers.LSTM(h_dim, return_sequences=True, go_backwards=True)
        self.dense_fw2 = layers.TimeDistributed(layers.Dense(p_dim))
        self.dense_bw2 = layers.TimeDistributed(layers.Dense(p_dim))

    def __call__(self, x):
        # 第一层LSTM和Dense
        lstm_fw1_output = self.lstm_fw1(x)
        lstm_bw1_output = self.lstm_bw1(x)
        # shape:(batch_size, seq_len, h_dim)=>(batch_size, seq_len, p_dim)
        dense_fw1_output = self.dense_fw1(lstm_fw1_output)
        dense_bw1_output = self.dense_bw1(lstm_bw1_output)
        # 进行连接
        # shape:(batch_size, seq_len, p_dim)=>(batch_size, seq_len, 2 * p_dim)
        output1 = tf.concat([dense_fw1_output, dense_bw1_output], axis=-1)
        # 第二层LSTM和Dense
        lstm_fw2_output = self.lstm_fw2(dense_bw1_output)
        lstm_bw2_output = self.lstm_bw2(dense_fw1_output)
        dense_fw2_output = self.dense_fw2(lstm_fw2_output)
        dense_bw2_output = self.dense_bw2(lstm_bw2_output)
        # 进行连接
        output2 = tf.concat([dense_fw2_output, dense_bw2_output], axis=-1)
        # 对于输入数据复制并扩张维度,以保持和需要连接的数据的维度一致
        # shape:(batch_size, seq_len, p_dim)=>(batch_size, seq_len, 2 * p_dim)
        x = tf.concat([x, x], axis=-1)
        # shape:(batch_size, seq_len, 2 * p_dim)=>(1, batch_size, seq_len, 2 * p_dim)
        x = tf.expand_dims(x, axis=0)
        output1 = tf.expand_dims(output1, axis=0)
        output2 = tf.expand_dims(output2, axis=0)
        # 进行连接生成词向量
        # shape:=>(3, batch_size, seq_len, 2 * p_dim)
        output = tf.concat([x, output1, output2], axis=0)
        return output

混合层

经过BilMs层之后,输出维度为[l+1, batch_size, seq_len, 2*p_dim]。对于每一个token t k t_k tk?,L层的BiLMs,生成出来的表征为2L + 1。得到的ELMo向量为:
在这里插入图片描述
这里的 x k L M x_k^{LM} xkLM?是词的embedding输出, h k , j L M = [ h → k , j L M , h ← k , j L M ] h_{k, j}^{LM}=[\overrightarrow{h}_{k,j}^{LM}, \overleftarrow{h}_{k,j}^{LM}] hk,jLM?=[h k,jLM?,h k,jLM?]表示每一层的正向和反向输出后拼接的结果。

混合层scalar mixer实现的操作是:
在这里插入图片描述

这里的 s j t a s k s_j^{task} sjtask?是一个softmax后的概率值, γ t a s k \gamma^{task} γtask对于整个ELMo向量进行scale上的缩放。视具体任务而定,不同的任务应设定不同的值。

实现代码:

# 混合层
# shape:(3, batch_size, seq_len, 2 * p_dim)=>(batch_size, seq_len, 2 * p_dim)
class ScalarMixer(layers.Layer):
    def __init__(self, gamma):
        super(ScalarMixer, self).__init__()
        self.gamma = gamma
        self.ln1 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
        self.ln2 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
        self.ln3 = tf.keras.layers.LayerNormalization(epsilon=1e-6)

    def __call__(self, x):
        output1, output2, output3 = x[0], x[1], x[2]
        softmax_output1 = tf.nn.softmax(output1)
        ln1_output = self.ln1(softmax_output1)
        softmax_output2 = tf.nn.softmax(output2)
        ln2_output = self.ln2(softmax_output2)
        softmax_output3 = tf.nn.softmax(output3)
        ln3_output = self.ln3(softmax_output3)
        output = self.gamma * (ln1_output * output1 + ln2_output * output2 + ln3_output * output3)
        return output

ELMo模型

在这里插入图片描述
实现代码:

# ELMo模型
class ELMo(tf.keras.Model):
    # vocab_size表示单词的词汇表的大小
    # w_dim表示最大的单词长度,默认为50
    # num_chars表示字符的词汇表的大小,一般为256
    # c_dim表示字符映射的向量维度,一般为16
    def __init__(self, vocab_size, w_dim, num_chars, c_dim, p_dim, h_dim, gamma=0.8):
        super(ELMo, self).__init__()
        self.embedding = layers.Embedding(vocab_size, w_dim, trainable=False)
        self.char_encoder = CharEncoder(w_dim, num_chars, c_dim, p_dim)
        self.bi_lstm = BiLMs(p_dim, h_dim)
        self.scalar_mixer = ScalarMixer(gamma)
        self.dense = layers.TimeDistributed(layers.Dense(vocab_size, activation="softmax"))

    def __call__(self, x):
        # 单词嵌入层
        # shape:(batch_size, seq_len)=>(batch_size, seq_len, w_dim)
        embedding_output = self.embedding(x)
        # 字符编码层
        # shape:(batch_size, seq_len, w_dim)=>(batch_size, seq_len, p_dim)
        char_encoder_output = self.char_encoder(embedding_output)
        # BiLSTM层
        # shape:(batch_size, seq_len, p_dim)=>(3, batch_size, seq_len, 2 * p_dim)
        bi_lstm_output = self.bi_lstm(char_encoder_output)
        # 混合层
        # shape:(3, batch_size, seq_len, 2 * p_dim)=>(batch_size, seq_len, 2 * p_dim)
        scalar_mixer_output = self.scalar_mixer(bi_lstm_output)
        # 输出层
        # shape:(batch_size, seq_len, 2 * p_dim)=>(batch_size, seq_len, vocab_size)
        output = self.dense(scalar_mixer_output)
        return output

测试代码

下面展示一个自动写英文的例子:
elmo.py

import tensorflow as tf
from tensorflow.keras import layers


# 字符编码层
# shape:(batch_size, seq_len, w_dim)=>(batch_size, seq_len, p_dim)
class CharEncoder(layers.Layer):
    # num_chars表示数据有多少不同的字符,也就是字符表(类似词汇表)的大小
    # c_dim表示每个字符映射为c_dim维的向量
    # num_highways表示通过的高速网络数
    # p_dim表示投影层输出的维度
    def __init__(self, w_dim, num_chars, c_dim, p_dim):
        super(CharEncoder, self).__init__()
        # multi-scale CNN

        # 字符嵌入层,将单个字符映射为向量
        # w_dim表示每个单词映射成向量的维数
        # self.reshape = layers.Reshape(w_dim)
        # shape:(batch_size * seq_len, w_dim)=>(batch_size * seq_len, w_dim, c_dim)
        self.embedding = layers.Embedding(num_chars, c_dim, trainable=True)
        # 七个一维卷积层,分别在序列上做卷积
        # 卷积核大小kernel_size=[1, 2, 3, 4, 5, 6, 7],通道大小filters=[32, 64, 128, 256, 512, 1024, 2048]
        # shape1:(batch_size * seq_len, w_dim, c_dim)=>(batch_size * seq_len, w_dim1, c_dim1)
        # ...
        # shape7:(batch_size * seq_len, w_dim, c_dim)=>(batch_size * seq_len, w_dim7, c_dim7)
        filters_list = [16, 16, 32, 64, 128, 256, 512]
        kernel_size_list = [1, 2, 3, 4, 5, 6, 7]
        conv2d_list = zip(filters_list, kernel_size_list)
        self.conv2ds = [layers.Conv2D(filters, (1, kernel_size)) for filters, kernel_size in conv2d_list]
        # 七个一维最大池化层,分别对卷积后的序列进行最大池化
        # 池化矩阵大小pool_size=[c_dim-1+1, c_dim-2+1, ..., c_dim-7+1]
        # shape1:(batch_size, seq_len, w_dim1, c_dim1)=>(batch_size, seq_len, 1, c_dim1)
        # ...
        # shape7:(batch_size, seq_len, w_dim1, c_dim1)=>(batch_size, seq_len, 1, c_dim7)
        pool_size_list = [w_dim, w_dim - 1, w_dim - 2, w_dim - 3, w_dim - 4, w_dim - 5, w_dim - 6]
        self.maxpool2ds = [layers.MaxPool2D((1, pool_size)) for pool_size in pool_size_list]

        num_activations = 7
        self.activations = [layers.Activation("relu") for _ in range(num_activations)]
        # Highway

        # 用两个Dense层来实现高速层
        # shape:(batch_size, seq_len, c_dim1+c_dim2+...+c_dim6)=>(batch_size, seq_len, c_dim1+c_dim2+...+c_dim7)
        units = sum(filters_list)
        self.dense1 = layers.TimeDistributed(layers.Dense(units, activation="sigmoid"))
        self.dense2 = layers.TimeDistributed(layers.Dense(units, activation="relu"))

        # Projection

        # shape:(batch_size, seq_len, c_dim1+c_dim2+...+c_dim7)=>(batch_size, seq_len, p_dim)
        # 使用一个Dense层来实现投影层
        self.dense3 = layers.TimeDistributed(layers.Dense(p_dim, activation="relu"))

    def __call__(self, x):
        # 字符嵌入
        # shape:(batch_size, seq_len, w_dim)=>(batch_size, seq_len, w_dim, c_dim)
        embedding_output = self.embedding(x)
        # print(embedding_output.shape)
        # 分别进行卷积
        # shape1:(batch_size, seq_len, w_dim, c_dim)=>(batch_size, seq_len, w_dim1, c_dim1)
        # ...
        # shape7:(batch_size, seq_len, w_dim, c_dim)=>(batch_size, seq_len, w_dim7, c_dim7)
        conv2d_outputs = [conv2d(embedding_output) for conv2d in self.conv2ds]
        # print(conv1d_outputs[0].shape)
        # 分别进行池化
        # shape1:(batch_size, seq_len, w_dim1, c_dim1)=>(batch_size, seq_len, 1, c_dim1)
        # ...
        # shape2:(batch_size, seq_len, w_dim1, c_dim1)=>(batch_size, seq_len, 1, c_dim7)
        maxpool2d_outputs = [maxpool2d(conv2d_outputs[i]) for i, maxpool2d in enumerate(self.maxpool2ds)]
        # 激活函数
        maxpool2d_outputs = [activation(maxpool2d_outputs[i]) for i, activation in enumerate(self.activations)]
        # 降低维度
        # shape:(batch_size, seq_len, 1, c_dim)=>(batch_size, seq_len, c_dim)
        maxpool2d_outputs = [tf.squeeze(maxpool2d_output, axis=2) for maxpool2d_output in maxpool2d_outputs]
        # 连接各个矩阵
        # shape:=>(batch_size, seq_len, c_dim1+c_dim2+...+c_dim7)
        output = tf.concat(maxpool2d_outputs, axis=-1)

        # 通过多条高速网络
        # shape:(batch_size, seq_len, c_dim1+c_dim2+...+c_dim7)=>(batch_size, seq_len, c_dim1+c_dim2+...+c_dim7)
        num_highways = 2
        for _ in range(num_highways):
            carry_gate = self.dense1(output)
            transform_gate = self.dense2(output)
            output = carry_gate * transform_gate + (1 - carry_gate) * output

        # 通过投影层
        # shape:(batch_size, seq_len, c_dim1+c_dim2+...+c_dim7)=>(batch_size, seq_len, p_dim)
        output = self.dense3(output)

        return output


# # 测试代码
# char_encode = CharEncoder(50, 256, 16, 512)
# x = tf.ones((64, 40, 50))
# char_encode(x)


# BiLMs层
# shape:(batch_size, seq_len, p_dim)=>(3, batch_size, seq_len, 2 * p_dim)
class BiLMs(layers.Layer):
    # h_dim表示LSTM内部的维数
    # p_dim表示CharEncoder中投影层映射的维数
    def __init__(self, p_dim, h_dim):
        super(BiLMs, self).__init__()
        # 使用两个单向LSTM来代替一个双向LSTM
        self.lstm_fw1 = layers.LSTM(h_dim, return_sequences=True)
        self.lstm_bw1 = layers.LSTM(h_dim, return_sequences=True, go_backwards=True)
        self.dense_fw1 = layers.TimeDistributed(layers.Dense(p_dim))
        self.dense_bw1 = layers.TimeDistributed(layers.Dense(p_dim))
        # 一共有两层
        self.lstm_fw2 = layers.LSTM(h_dim, return_sequences=True)
        self.lstm_bw2 = layers.LSTM(h_dim, return_sequences=True, go_backwards=True)
        self.dense_fw2 = layers.TimeDistributed(layers.Dense(p_dim))
        self.dense_bw2 = layers.TimeDistributed(layers.Dense(p_dim))

    def __call__(self, x):
        # 第一层LSTM和Dense
        lstm_fw1_output = self.lstm_fw1(x)
        lstm_bw1_output = self.lstm_bw1(x)
        # shape:(batch_size, seq_len, h_dim)=>(batch_size, seq_len, p_dim)
        dense_fw1_output = self.dense_fw1(lstm_fw1_output)
        dense_bw1_output = self.dense_bw1(lstm_bw1_output)
        # 进行连接
        # shape:(batch_size, seq_len, p_dim)=>(batch_size, seq_len, 2 * p_dim)
        output1 = tf.concat([dense_fw1_output, dense_bw1_output], axis=-1)
        # 第二层LSTM和Dense
        lstm_fw2_output = self.lstm_fw2(dense_bw1_output)
        lstm_bw2_output = self.lstm_bw2(dense_fw1_output)
        dense_fw2_output = self.dense_fw2(lstm_fw2_output)
        dense_bw2_output = self.dense_bw2(lstm_bw2_output)
        # 进行连接
        output2 = tf.concat([dense_fw2_output, dense_bw2_output], axis=-1)
        # 对于输入数据复制并扩张维度,以保持和需要连接的数据的维度一致
        # shape:(batch_size, seq_len, p_dim)=>(batch_size, seq_len, 2 * p_dim)
        x = tf.concat([x, x], axis=-1)
        # shape:(batch_size, seq_len, 2 * p_dim)=>(1, batch_size, seq_len, 2 * p_dim)
        x = tf.expand_dims(x, axis=0)
        output1 = tf.expand_dims(output1, axis=0)
        output2 = tf.expand_dims(output2, axis=0)
        # 进行连接生成词向量
        # shape:=>(3, batch_size, seq_len, 2 * p_dim)
        output = tf.concat([x, output1, output2], axis=0)
        return output


# # 测试代码
# bi_lstm = BiLMs(16, 32)
# x = tf.ones((64, 40, 16))
# output = bi_lstm(x)


# 混合层
# shape:(3, batch_size, seq_len, 2 * p_dim)=>(batch_size, seq_len, 2 * p_dim)
class ScalarMixer(layers.Layer):
    def __init__(self, gamma):
        super(ScalarMixer, self).__init__()
        self.gamma = gamma
        self.ln1 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
        self.ln2 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
        self.ln3 = tf.keras.layers.LayerNormalization(epsilon=1e-6)

    def __call__(self, x):
        output1, output2, output3 = x[0], x[1], x[2]
        softmax_output1 = tf.nn.softmax(output1)
        ln1_output = self.ln1(softmax_output1)
        softmax_output2 = tf.nn.softmax(output2)
        ln2_output = self.ln2(softmax_output2)
        softmax_output3 = tf.nn.softmax(output3)
        ln3_output = self.ln3(softmax_output3)
        output = self.gamma * (ln1_output * output1 + ln2_output * output2 + ln3_output * output3)
        return output


# ELMo模型
class ELMo(tf.keras.Model):
    # vocab_size表示单词的词汇表的大小
    # w_dim表示最大的单词长度,默认为50
    # num_chars表示字符的词汇表的大小,一般为256
    # c_dim表示字符映射的向量维度,一般为16
    def __init__(self, vocab_size, w_dim, num_chars, c_dim, p_dim, h_dim, gamma=0.8):
        super(ELMo, self).__init__()
        self.embedding = layers.Embedding(vocab_size, w_dim, trainable=False)
        self.char_encoder = CharEncoder(w_dim, num_chars, c_dim, p_dim)
        self.bi_lstm = BiLMs(p_dim, h_dim)
        self.scalar_mixer = ScalarMixer(gamma)
        self.dense = layers.TimeDistributed(layers.Dense(vocab_size, activation="softmax"))

    def __call__(self, x):
        # 单词嵌入层
        # shape:(batch_size, seq_len)=>(batch_size, seq_len, w_dim)
        embedding_output = self.embedding(x)
        # 字符编码层
        # shape:(batch_size, seq_len, w_dim)=>(batch_size, seq_len, p_dim)
        char_encoder_output = self.char_encoder(embedding_output)
        # BiLSTM层
        # shape:(batch_size, seq_len, p_dim)=>(3, batch_size, seq_len, 2 * p_dim)
        bi_lstm_output = self.bi_lstm(char_encoder_output)
        # 混合层
        # shape:(3, batch_size, seq_len, 2 * p_dim)=>(batch_size, seq_len, 2 * p_dim)
        scalar_mixer_output = self.scalar_mixer(bi_lstm_output)
        # 输出层
        # shape:(batch_size, seq_len, 2 * p_dim)=>(batch_size, seq_len, vocab_size)
        output = self.dense(scalar_mixer_output)
        return output


# # 测试代码
# elmo = ELMo(2000, 40, 262, 40, 2, 16, 32)
# a = tf.ones((64, 40))
# output = elmo(a)

train_elmo.py

import time
import tensorflow as tf
import tensorflow_datasets as tfds
from tensorflow.keras import layers, losses, optimizers, metrics, datasets, preprocessing
from ELMo.elmo import ELMo


# 构造数据集
# 获取数据集字典(包含训练、验证、测试数据集)以及元数据
examples, metadata = tfds.load('ted_hrlr_translate/pt_to_en', with_info=True, as_supervised=True)
# 获取训练、验证、测试数据集
train_examples, val_examples, test_examples = examples["train"], examples["validation"], examples["test"]
# 构建key-value词典(分词器)
tokenizer_en = tfds.deprecated.text.SubwordTextEncoder.build_from_corpus((en.numpy() for pt, en in val_examples),
                                                                         target_vocab_size=2 ** 13)
tokenizer_pt = tfds.deprecated.text.SubwordTextEncoder.build_from_corpus((pt.numpy() for pt, en in val_examples),
                                                                         target_vocab_size=2 ** 13)


# # 测试代码
# sample_str = 'hello world, tensorflow 2'
# tokenized_str = tokenizer_en.encode(sample_str)
# print(tokenized_str)
# original_str = tokenizer_en.decode(tokenized_str)
# print(original_str)


# 数据集预处理
# 添加start、end标记,用vocab_size、vocab_size+1表示
# 输入pt、en为句子,输出为带有首尾的数字标记,都是Tensor张量类型
def encode(pt, en):
    pt = [tokenizer_pt.vocab_size] + tokenizer_pt.encode(pt.numpy()) + [tokenizer_pt.vocab_size + 1]
    en = [tokenizer_en.vocab_size] + tokenizer_en.encode(en.numpy()) + [tokenizer_en.vocab_size + 1]
    return pt, en


# 调用py_function函数,将结果转换成Tensor张量
def tf_encode(pt, en):
    return tf.py_function(encode, [pt, en], [tf.int32, tf.int32])


# 过滤掉长度超过40的句子
def filter_sentence(x, y, max_length=40):
    return tf.logical_and(tf.size(x) <= max_length, tf.size(y) <= max_length)


# 训练集
train_dataset = train_examples.map(tf_encode)
train_dataset = train_dataset.filter(filter_sentence)
# 从缓存中加速读取
train_dataset = train_dataset.cache()
# 对于长度没有达到40的张量进行填充,输出shape=(64, 40)
train_dataset = train_dataset.padded_batch(64, padded_shapes=([40], [40]))
train_dataset = train_dataset.prefetch(tf.data.experimental.AUTOTUNE)
# 验证集
validate_dataset = val_examples.map(tf_encode)
validate_dataset = validate_dataset.filter(filter_sentence)
validate_dataset = validate_dataset.padded_batch(64, padded_shapes=([40], [40]))


# 构建模型
# elmo = tf.keras.Sequential([
#     layers.Embedding(tokenizer_en.vocab_size + 2, 128),
#     layers.LSTM(256, return_sequences=True),
#     layers.LSTM(256, return_sequences=True),
#     layers.Dense(tokenizer_en.vocab_size + 2, activation="softmax")
# ])

elmo = ELMo(vocab_size=tokenizer_en.vocab_size + 2,
            w_dim=50,
            num_chars=256,
            c_dim=16,
            p_dim=512,
            h_dim=512)

# 损失函数
loss_func = losses.SparseCategoricalCrossentropy()
# 优化器
optimizer = optimizers.Adam(0.004)
# 指标
# 损失值
train_loss = metrics.Mean(name='train_loss')
# 准确率
train_accuracy = metrics.SparseCategoricalAccuracy(name="train_accuracy")

# 检查点
checkpoint_path = "./checkpoint"
checkpoint = tf.train.Checkpoint(elmo=elmo, optimizer=optimizer)
checkpoint_manager = tf.train.CheckpointManager(checkpoint, checkpoint_path, 3)

if checkpoint_manager.latest_checkpoint:
    checkpoint.restore(checkpoint_manager.latest_checkpoint)
    print("restore")


# 训练方式
@tf.function
def train_step(inputs):
    inputs_real = inputs[:, 1:]
    inputs = inputs[:, : -1]
    with tf.GradientTape() as tape:
        prediction = elmo(inputs)
        loss = loss_func(inputs_real, prediction)
    # 计算梯度
    gradients = tape.gradient(loss, elmo.trainable_variables)
    # 反向传播
    optimizer.apply_gradients(zip(gradients, elmo.trainable_variables))
    # 更新指标
    train_loss(loss)
    train_accuracy(inputs_real, prediction)


# 训练过程
def train(epochs=100):
    for epoch in range(epochs):
        start = time.time()
        train_loss.reset_state()
        train_accuracy.reset_state()
        for batch, (_, inputs) in enumerate(validate_dataset):
            train_step(inputs)
        print("epoch:{}, loss:{:.6f}, accuracy:{:.6f}".format(
            epoch + 1, train_loss.result(), train_accuracy.result()
        ))
        end = time.time()
        print("time in 1 epoch:{:.6f} secs".format(end - start))
        if epoch % 10 == 0:
            checkpoint_save_path = checkpoint_manager.save()
            print('epoch {}, save model at {}'.format(
                epoch + 1, checkpoint_save_path
            ))


def evaluate():
    inputs = tf.expand_dims([tokenizer_en.vocab_size], axis=0)  # (1, 1)
    # 句子长度最大为40,每个循环翻译出一个单词
    for i in range(100):
        predictions = elmo(inputs)
        # 取出要预测的单词
        predictions = predictions[:, -1, :]
        # 获取单词对应的id
        predictions_id = tf.cast(tf.argmax(predictions, axis=-1), dtype=tf.int32)
        if tf.equal(predictions_id, tokenizer_en.vocab_size + 1):
            inputs = tf.concat([inputs, [predictions_id]], axis=-1)
            return tf.squeeze(inputs, axis=0)
        # 连接该单词组成新的输入
        inputs = tf.concat([inputs, [predictions_id]], axis=-1)
    return tf.squeeze(inputs, axis=0)


train()
output = evaluate()
output = tokenizer_en.decode(output[1: -1])
print(output)

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-05-05 11:19:11  更:2022-05-05 11:21:48 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/26 7:47:20-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码