1、典型周期矩形脉冲傅里叶级数实现
A=1;T=2;tao=1;
t=-2:0.001:2;
N=input('Number of harmonic=')
X0=A*tao/T;
w0=2*pi/T;
X=X0*ones(1,length(t));
for k=1:1:N;
X=X+2*X0*sinc(k*w0*tao/2/pi)*cos(k*w0*t);
end
plot(t,X)
n=5时 n=20时
2、典型非周期信号指数信号x=exp(-2*t)的傅里叶变换
syms x t
x=exp(-2*t)
subplot(311);
ezplot(x);
title('指数信号')
X=fourier(X)
X=simplify(X)
subplot(312)
ezplot(abs(X))
title('幅度谱')
subplot(313)
ezplot(angle(X))
title('相位谱')
3、验证傅里叶变换的对称性
N=3001;t=linspace(-15,15,N);
f=pi*[heaviside(t+1)-heaviside(t-1)];
dt=30/(N-1); M=500;
w=linspace(-5*pi,5*pi,M);
F=f*exp(-j*t'*w)*dt;
subplot(2,2,1),plot(t,f);
axis([-2,2,-1,4]);
xlabel('t');ylabel('f(t)');
subplot(2,2,2), plot(w,real(F));
axis([-20,20,-3,7]);
xlabel('w');ylabel('F(w)=F[f(t)]');
f1=sinc(t/pi);
F1=f1*exp(-j*t'*w)*dt;
subplot(2,2,3),plot(t,f1);
xlabel('t');ylabel('f1(t)-F(t)/2*pi'); subplot(2,2,4),plot(w,real(F1));
axis([-2,2,-1,4]);
xlabel('w');
ylabel('F1(w)=F[f1(t)]=f(w)');
4、 x = 2exp(2t)的FFT快速算法
fs=500;%采样率
f1=5;%信号频率
f2=10;%信号频率
T=1;%时宽1s
n=round(T*fs);%采样点个数
t=linspace(0,T,n);%时域横坐标
x = 2*exp(2*t);
figure(1);
plot(t,x);%画时域图
xlabel('t/s')
grid on
X = fftshift(fft(x./(n))); %用fft得出离散傅里叶变换
f=linspace(-fs/2,fs/2-1,n);%频域横坐标,注意奈奎斯特采样定理,最大原信号最大频率不超过采样频率的一半
figure(2)
plot(f,abs(X));%画双侧频谱幅度图
xlabel('f/Hz')
ylabel('幅度')
grid on
原信号x = 2exp(2t) fft离散傅里叶变换
3,傅里叶变换的性质有如下:
|