IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> mip-NeRF代码debug -> 正文阅读

[人工智能]mip-NeRF代码debug

代码:https://github.com/google/mipnerf
翻译解说:https://blog.csdn.net/qq_43620967/article/details/124458976

mip-NeRF-READNME

该存储库包含以下内容的代码版本 Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields. 这个实现是用JAX写的,是Google的JaxNeRF实现的一个分支。如果您遇到任何问题,请联系Jon Barron
在这里插入图片描述

Abstract

在这里插入图片描述

Installation

我们建议使用 Anaconda 来建立环境。运行以下命令:

# Clone the repo
git clone https://github.com/google/mipnerf.git; cd mipnerf
# Create a conda environment, note you can use python 3.6-3.8 as
# one of the dependencies (TensorFlow) hasn't supported python 3.9 yet.
conda create --name mipnerf python=3.6.13; conda activate mipnerf
# Prepare pip
conda install pip; pip install --upgrade pip


# Install requirements
pip install -r requirements.txt

pip install -r requirements.txt会报错
在这里插入图片描述
改成

pip3 install -r requirements.txt

即可
在这里插入图片描述
若报超时的错误

pip3 install -r requirements.txt --default-timeout=500

[Optional] Install GPU and TPU support for Jax

# Remember to change cuda101 to your CUDA version, e.g. cuda110 for CUDA 11.0.
pip install --upgrade jax jaxlib==0.1.65+cuda101 -f https://storage.googleapis.com/jax-releases/jax_releases.html

我安装的是

pip3 install --upgrade jax==0.2.3 jaxlib==0.1.69+cuda111 -f https://storage.googleapis.com/jax-releases/jax_releases.html

Data

然后,你需要从NeRF官方Google Drive下载数据集。请下载并解压nerf_synthetic.zipnerf_llff_data.zip.

Generate multiscale dataset

您可以通过运行以下命令来生成本文中使用的多尺度数据集,

python scripts/convert_blender_data.py --blenderdir /nerf_synthetic --outdir /multiscale

Running

在本文中使用的三个数据集的单个场景上训练mip-NeRF的示例脚本可以在scripts/中找到。您需要将路径更改为指向数据集所在的位置。我们的模型和一些消融的Gin配置文件可以在configs/中找到。在scripts/中可以找到对每个场景的测试集进行评估的示例脚本,之后您可以使用scripts/summary . ipynb来生成所有场景的错误度量,其格式与本文表格中使用的格式相同。

OOM errors

您可能需要减小批处理大小,以避免内存不足错误。例如,该模型可以使用以下标志在NVIDIA 3080 (10Gb)上运行.

--gin_param="Config.batch_size = 1024"

Citation

If you use this software package, please cite our paper:

@misc{barron2021mipnerf,
title={Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields},
author={Jonathan T. Barron and Ben Mildenhall and Matthew Tancik and Peter Hedman and Ricardo Martin-Brualla and Pratul P. Srinivasan},
year={2021},
eprint={2103.13415},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
Acknowledgements

Thanks to Boyang Deng for JaxNeRF.

项目地址

/media/hp/C440AC3040AC2ADE/ysh/mipnerf-main/

scripts/convert_blender_data.py

def main

def main(unused_argv):

  blenderdir = FLAGS.blenderdir
  outdir = FLAGS.outdir
  n_down = FLAGS.n_down
  if not os.path.exists(outdir):
    os.makedirs(outdir)

  dirs = [os.path.join(blenderdir, f) for f in os.listdir(blenderdir)]
  dirs = [d for d in dirs if os.path.isdir(d)]
  print(dirs)
  for basedir in dirs:
    print()
    newdir = os.path.join(outdir, os.path.basename(basedir))
    print('Converting from', basedir, 'to', newdir)
    convert_to_nerfdata(basedir, newdir, n_down)

def load_renderings

def load_renderings(data_dir, split):
  """Load images and metadata from disk."""
  f = 'transforms_{}.json'.format(split)
  with open(path.join(data_dir, f), 'r') as fp:
    meta = json.load(fp)
  images = []
  cams = []
  print('Loading imgs')
  for frame in meta['frames']:
    fname = os.path.join(data_dir, frame['file_path'] + '.png')
    with open(fname, 'rb') as imgin:
      image = np.array(Image.open(imgin), dtype=np.float32) / 255.
    cams.append(frame['transform_matrix'])
    images.append(image)
  ret = {}
  ret['images'] = np.stack(images, axis=0)
  print('Loaded all images, shape is', ret['images'].shape)
  ret['camtoworlds'] = np.stack(cams, axis=0)
  w = ret['images'].shape[2]
  camera_angle_x = float(meta['camera_angle_x'])
  ret['focal'] = .5 * w / np.tan(.5 * camera_angle_x)
  return ret

transforms_train.json

在这里插入图片描述
在这里插入图片描述
camera_angle_x 用来计算focal ,是相机的水平视场

ret['focal'] = .5 * w / np.tan(.5 * camera_angle_x)

file_path 用来获取图片路径

fname = os.path.join(data_dir, frame['file_path'] + '.png')

rotation 没用到

transform_matrix 用作相机坐标到世界坐标的转换
是从相机坐标到世界坐标转换的姿态矩阵(camera-to-world) 即
在这里插入图片描述
相机坐标系=Cex * 世界坐标系
Cex逆 * 相机坐标系=世界坐标系在这里插入图片描述

cams.append(frame['transform_matrix'])
ret['camtoworlds'] = np.stack(cams, axis=0)

在这里插入图片描述

def convert_to_nerfdata

def convert_to_nerfdata(basedir, newdir, n_down):
  """Convert Blender data to multiscale."""
  if not os.path.exists(newdir):
    os.makedirs(newdir)
  splits = ['train', 'val', 'test']
  bigmeta = {}
  # Foreach split in the dataset
  for split in splits:
    print('Split', split)
    # Load everything
    data = load_renderings(basedir, split)

    # Save out all the images
    imgdir = 'images_{}'.format(split)
    os.makedirs(os.path.join(newdir, imgdir), exist_ok=True)
    fnames = []
    widths = []
    heights = []
    focals = []
    cam2worlds = []
    lossmults = []
    labels = []
    nears, fars = [], []
    f = data['focal']
    print('Saving images')
    for i, img in enumerate(data['images']):
      for j in range(n_down):
        fname = '{}/{:03d}_d{}.png'.format(imgdir, i, j)
        fnames.append(fname)
        fname = os.path.join(newdir, fname)
        with open(fname, 'wb') as imgout:
          img8 = Image.fromarray(np.uint8(img * 255))
          img8.save(imgout)
        widths.append(img.shape[1])
        heights.append(img.shape[0])
        focals.append(f / 2**j)
        cam2worlds.append(data['camtoworlds'][i].tolist())
        lossmults.append(4.**j)
        labels.append(j)
        nears.append(2.)
        fars.append(6.)
        img = down2(img)

在这里插入图片描述
def down2

def down2(img):
  sh = img.shape
  return np.mean(np.reshape(img, [sh[0] // 2, 2, sh[1] // 2, 2, -1]), (1, 3))

图片大小一路缩小
sh变化:

(800, 800, 4)->(100, 100, 4)

shape 值变化:

[800, 400, 200, 100]
 # Create metadata
    meta = {}
    meta['file_path'] = fnames
    meta['cam2world'] = cam2worlds
    meta['width'] = widths
    meta['height'] = heights
    meta['focal'] = focals
    meta['label'] = labels
    meta['near'] = nears
    meta['far'] = fars
    meta['lossmult'] = lossmults

    fx = np.array(focals)
    fy = np.array(focals)
    cx = np.array(meta['width']) * .5
    cy = np.array(meta['height']) * .5
    arr0 = np.zeros_like(cx)
    arr1 = np.ones_like(cx)
    k_inv = np.array([
        [arr1 / fx, arr0, -cx / fx],
        [arr0, -arr1 / fy, cy / fy],
        [arr0, arr0, -arr1],
    ])
    k_inv = np.moveaxis(k_inv, -1, 0)
    meta['pix2cam'] = k_inv.tolist()

    bigmeta[split] = meta

  for k in bigmeta:
    for j in bigmeta[k]:
      print(k, j, type(bigmeta[k][j]), np.array(bigmeta[k][j]).shape)

  jsonfile = os.path.join(newdir, 'metadata.json')
  with open(jsonfile, 'w') as f:
    json.dump(bigmeta, f, ensure_ascii=False, indent=4)

在这里插入图片描述
meta[‘pix2cam’]
在这里插入图片描述
二维图片的坐标相机坐标系中的坐标 存在下面的转换关系:在这里插入图片描述
其中,矩阵 指的是相机的内参,包含焦距 (focal length) fx 以及图像中心点的坐标 cx 。
k_inv 是 相机的内参矩阵的逆 即 pix2cam 图像到相机矩阵

对于相同的数据集,相机的内参矩阵一般是固定的,一般会在一个叫 intrinsics.txt 的文件里面给出。

train_blender.sh

# Script for training on the Blender dataset.

SCENE=lego
EXPERIMENT=debug
TRAIN_DIR=/Users/barron/tmp/nerf_results/$EXPERIMENT/$SCENE
DATA_DIR=/Users/barron/data/nerf_synthetic/$SCENE

rm $TRAIN_DIR/*
python -m train \
  --data_dir=$DATA_DIR \
  --train_dir=$TRAIN_DIR \
  --gin_file=configs/blender.gin \
  --logtostderr

python -m

将库中的python模块用作脚本去运行

1.python xxx.py
2.python -m xxx.py

这是两种加载py文件的方式:

1叫做直接运行
2相当于import,叫做当做模块来启动

不同的加载py文件的方式,主要是影响sys.path这个属性。sys.path相当于Linux中的PATH。
这就是当前Python解析器运行的环境,Python解析器会在这些目录下去寻找依赖库。

运行脚本

将目录改成自己的数据集地址

TRAIN_DIR=/media/hp/C440AC3040AC2ADE/ysh/mipnerf-main/nerf_example_data/nerf_results/$EXPERIMENT/$SCENE
DATA_DIR=/media/hp/C440AC3040AC2ADE/ysh/mipnerf-main/nerf_example_data/nerf_synthetic/$SCENE
conda activate mipnerf
bash scripts/train_blender.sh

configs/blender.gin

Config.dataset_loader = 'blender'
Config.batching = 'single_image'

train.py

from absl import app
from absl import flags
from internal import datasets
from internal import math
from internal import models
from internal import utils
from internal import vis

config配置
FLAGS 作用及用法

FLAGS = flags.FLAGS
utils.define_common_flags()
flags.DEFINE_integer('render_every', 5000,
                     'The number of steps between test set image renderings.')#测试集图像渲染之间的步骤数

jax.config.parse_flags_with_absl()

utils.define_common_flags()

def define_common_flags():
  # Define the flags used by both train.py and eval.py
  flags.DEFINE_multi_string('gin_file', None,
                            'List of paths to the config files.')
  flags.DEFINE_multi_string(
      'gin_param', None, 'Newline separated list of Gin parameter bindings.') #换行符分隔的Gin参数绑定列表
  flags.DEFINE_string('train_dir', None, 'where to store ckpts and logs')
  flags.DEFINE_string('data_dir', None, 'input data directory.')
  flags.DEFINE_integer(
      'chunk', 8192,
      'the size of chunks for evaluation inferences, set to the value that'
      'fits your GPU/TPU memory.')

main

1.config

def main(unused_argv):
  rng = random.PRNGKey(20200823)
  # Shift the numpy random seed by host_id() to shuffle data loaded by different hosts.
  np.random.seed(20201473 + jax.host_id())

  config = utils.load_config()

  if config.batch_size % jax.device_count() != 0:
    raise ValueError('Batch size must be divisible by the number of devices.')

utils.load_config()

def load_config():
  gin.parse_config_files_and_bindings(flags.FLAGS.gin_file,
                                      flags.FLAGS.gin_param)
  return Config()

class Config

class Config:
  """Configuration flags for everything."""
  dataset_loader: str = 'multicam'  # The type of dataset loader to use.
  batching: str = 'all_images'  # Batch composition, [single_image, all_images].
  batch_size: int = 4096  # The number of rays/pixels in each batch.
  factor: int = 0  # The downsample factor of images, 0 for no downsampling.
  spherify: bool = False  # Set to True for spherical 360 scenes.
  render_path: bool = False  # If True, render a path. Used only by LLFF.
  llffhold: int = 8  # Use every Nth image for the test set. Used only by LLFF.
  lr_init: float = 5e-4  # The initial learning rate.
  lr_final: float = 5e-6  # The final learning rate.
  lr_delay_steps: int = 2500  # The number of "warmup" learning steps.
  lr_delay_mult: float = 0.01  # How much sever the "warmup" should be.
  grad_max_norm: float = 0.  # Gradient clipping magnitude, disabled if == 0.
  grad_max_val: float = 0.  # Gradient clipping value, disabled if == 0.
  max_steps: int = 1000000  # The number of optimization steps.
  save_every: int = 100000  # The number of steps to save a checkpoint.
  print_every: int = 100  # The number of steps between reports to tensorboard.
  gc_every: int = 10000  # The number of steps between garbage collections.
  test_render_interval: int = 1  # The interval between images saved to disk.
  disable_multiscale_loss: bool = False  # If True, disable multiscale loss.
  randomized: bool = True  # Use randomized stratified sampling.
  near: float = 2.  # Near plane distance.
  far: float = 6.  # Far plane distance.
  coarse_loss_mult: float = 0.1  # How much to downweight the coarse loss(es).
  weight_decay_mult: float = 0.  # The multiplier on weight decay.
  white_bkgd: bool = True  # If True, use white as the background (black o.w.).

2.dataset

  dataset = datasets.get_dataset('train', FLAGS.data_dir, config)
  test_dataset = datasets.get_dataset('test', FLAGS.data_dir, config)

def get_dataset

def get_dataset(split, train_dir, config):
  return dataset_dict[config.dataset_loader](split, train_dir, config)
dataset_dict = {
    'blender': Blender,
    'llff': LLFF,
    'multicam': Multicam,
}

class Blender

class Blender(Dataset):
  """Blender Dataset."""

class Dataset

class Dataset(threading.Thread):
  """Dataset Base Class."""

  def __init__(self, split, data_dir, config):
    super(Dataset, self).__init__()
    self.queue = queue.Queue(3)  # Set prefetch buffer to 3 batches.
    self.daemon = True
    self.split = split
    self.data_dir = data_dir
    self.near = config.near
    self.far = config.far
    if split == 'train':
      self._train_init(config)
    elif split == 'test':
      self._test_init(config)
    else:
      raise ValueError(
          'the split argument should be either \'train\' or \'test\', set'
          'to {} here.'.format(split))
    self.batch_size = config.batch_size // jax.host_count()
    self.batching = config.batching
    self.render_path = config.render_path
    self.start()

在这里插入图片描述

def _train_init

  def _train_init(self, config):
    """Initialize training."""
    self._load_renderings(config) #加载图片 以及 对应图片相机信息
    self._generate_rays() #生成光线

    if config.batching == 'all_images':
      # flatten the ray and image dimension together.
      self.images = self.images.reshape([-1, 3])
      self.rays = utils.namedtuple_map(lambda r: r.reshape([-1, r.shape[-1]]),
                                       self.rays)
    elif config.batching == 'single_image':
      self.images = self.images.reshape([-1, self.resolution, 3])
      self.rays = utils.namedtuple_map(
          lambda r: r.reshape([-1, self.resolution, r.shape[-1]]), self.rays)
    else:
      raise NotImplementedError(
          f'{config.batching} batching strategy is not implemented.')

def _generate_rays

描述了光线的具体生成方法,一条光线包含以下内容

    self.rays = utils.Rays(
        origins=origins,
        directions=directions,
        viewdirs=viewdirs,
        radii=radii,
        lossmult=ones,
        near=ones * self.near,
        far=ones * self.far)
  # TODO(bydeng): Swap this function with a more flexible camera model.
  def _generate_rays(self):
    """Generating rays for all images."""
    x, y = np.meshgrid(  # pylint: disable=unbalanced-tuple-unpacking
        np.arange(self.w, dtype=np.float32),  # X-Axis (columns)
        np.arange(self.h, dtype=np.float32),  # Y-Axis (rows)
        indexing='xy')
    camera_dirs = np.stack(
        [(x - self.w * 0.5 + 0.5) / self.focal,
         -(y - self.h * 0.5 + 0.5) / self.focal, -np.ones_like(x)],
        axis=-1)
    directions = ((camera_dirs[None, ..., None, :] *
                   self.camtoworlds[:, None, None, :3, :3]).sum(axis=-1))
    origins = np.broadcast_to(self.camtoworlds[:, None, None, :3, -1],
                              directions.shape)
    viewdirs = directions / np.linalg.norm(directions, axis=-1, keepdims=True)

    # Distance from each unit-norm direction vector to its x-axis neighbor.
    dx = np.sqrt(
        np.sum((directions[:, :-1, :, :] - directions[:, 1:, :, :])**2, -1))
    dx = np.concatenate([dx, dx[:, -2:-1, :]], 1)
    # Cut the distance in half, and then round it out so that it's
    # halfway between inscribed by / circumscribed about the pixel.

    radii = dx[..., None] * 2 / np.sqrt(12)

    ones = np.ones_like(origins[..., :1])
    self.rays = utils.Rays(
        origins=origins,
        directions=directions,
        viewdirs=viewdirs,
        radii=radii,
        lossmult=ones,
        near=ones * self.near,
        far=ones * self.far)

utils.Rays

Rays = collections.namedtuple(
    'Rays',
    ('origins', 'directions', 'viewdirs', 'radii', 'lossmult', 'near', 'far'))

在这里插入图片描述

3.model

  rng, key = random.split(rng)
  model, variables = models.construct_mipnerf(key, dataset.peek())
  num_params = jax.tree_util.tree_reduce(
      lambda x, y: x + jnp.prod(jnp.array(y.shape)), variables, initializer=0)
  print(f'Number of parameters being optimized: {num_params}')
  optimizer = flax.optim.Adam(config.lr_init).create(variables)
  state = utils.TrainState(optimizer=optimizer)
  del optimizer, variables

在这里插入图片描述

  def peek(self):
    """在不出列的情况下,查看下一批训练或测试示例.

    Returns:
      batch: dict, has 'pixels' and 'rays'.
    """
    x = self.queue.queue[0].copy()  # Make a copy of the front of the queue.
    if self.split == 'train':
      return utils.shard(x)
    else:
      return utils.to_device(x)
def shard(xs):
  """沿着第一维将多个设备的数据分割成碎片。"""
  return jax.tree_map(
      lambda x: x.reshape((jax.local_device_count(), -1) + x.shape[1:]), xs)

def construct_mipnerf

def construct_mipnerf(rng, example_batch):
  """Construct a Neural Radiance Field.

  Args:
    rng: jnp.ndarray. 随机数生成器。
    example_batch: dict, an example of a batch of data.

  Returns:
    model: nn.Model. Nerf model with parameters.
    state: flax.Module.state. 有状态参数的Nerf模型状态.
  """
  model = MipNerfModel()
  key, rng = random.split(rng)
  init_variables = model.init(
      key,
      rng=rng,
      rays=utils.namedtuple_map(lambda x: x[0], example_batch['rays']),
      randomized=False,
      white_bkgd=False)
  return model, init_variables

model值

MipNerfModel(
    # attributes
    num_samples = 128
    num_levels = 2
    resample_padding = 0.01
    stop_level_grad = True
    use_viewdirs = True
    lindisp = False
    ray_shape = 'cone'
    min_deg_point = 0
    max_deg_point = 16
    deg_view = 4
    density_activation = softplus
    density_noise = 0.0
    density_bias = -1.0
    rgb_activation = sigmoid
    rgb_padding = 0.001
    disable_integration = False
)

4.学习率

  learning_rate_fn = functools.partial(
      math.learning_rate_decay,
      lr_init=config.lr_init,
      lr_final=config.lr_final,
      max_steps=config.max_steps,
      lr_delay_steps=config.lr_delay_steps,
      lr_delay_mult=config.lr_delay_mult)

math.learning_rate_decay

连续学习率衰减函数

def learning_rate_decay(step,
                        lr_init,
                        lr_final,
                        max_steps,
                        lr_delay_steps=0,
                        lr_delay_mult=1):
  """Continuous learning rate decay function.

  当步长=0时,返回的速率为lr_init,当步长=max_steps时,返回的速率为lr_final,
  并且 在别处是对数线性插值的(相当于指数衰减)。


  如果lr_delay_steps>0,那么学习速率将由lr_delay_mult的某个平滑函数来缩放,
  使得初始学习速率在优化开始时是lr_init*lr_delay_mult,
  但是当steps>lr_delay_steps时将被缓和回到正常学习速率。
  
  Args:
    step: int, the current optimization step.
    lr_init: float, the initial learning rate.
    lr_final: float, the final learning rate.
    max_steps: int, the number of steps during optimization.
    lr_delay_steps: int, the number of steps to delay the full learning rate.
    lr_delay_mult: float, the multiplier on the rate when delaying it.

  Returns:
    lr: the learning for current step 'step'.
  """
  if lr_delay_steps > 0:
    # A kind of reverse cosine decay.
    delay_rate = lr_delay_mult + (1 - lr_delay_mult) * jnp.sin(
        0.5 * jnp.pi * jnp.clip(step / lr_delay_steps, 0, 1))
  else:
    delay_rate = 1.
  t = jnp.clip(step / max_steps, 0, 1)
  log_lerp = jnp.exp(jnp.log(lr_init) * (1 - t) + jnp.log(lr_final) * t)
  return delay_rate * log_lerp

5.函数映射

  train_pstep = jax.pmap(
      functools.partial(train_step, model, config),
      axis_name='batch',
      in_axes=(0, 0, 0, None),
      donate_argnums=(2,))
  render_eval_pfn = jax.pmap(
      render_eval_fn,
      in_axes=(None, None, 0),  # Only distribute the data input.
      donate_argnums=(2,),
      axis_name='batch',
  )
  ssim_fn = jax.jit(functools.partial(math.compute_ssim, max_val=1.))

6.加载已训练模型

  if not utils.isdir(FLAGS.train_dir):
    utils.makedirs(FLAGS.train_dir)
  state = checkpoints.restore_checkpoint(FLAGS.train_dir, state)
  # Resume training a the step of the last checkpoint.
  init_step = state.optimizer.state.step + 1
  state = flax.jax_utils.replicate(state)

7.summary_writer

  if jax.host_id() == 0:
    summary_writer = tensorboard.SummaryWriter(FLAGS.train_dir)

8.迭代

  # Prefetch_buffer_size = 3 x batch_size 预缓冲区大小
  pdataset = flax.jax_utils.prefetch_to_device(dataset, 3)
  rng = rng + jax.host_id()  # Make random seed separate across hosts.使随机种子在主机之间分离。
  keys = random.split(rng, jax.local_device_count())  # For pmapping RNG keys.
  gc.disable()  # Disable automatic garbage collection for efficiency.禁用自动垃圾收集以提高效率。
  stats_trace = []
  reset_timer = True
  for step, batch in zip(range(init_step, config.max_steps + 1), pdataset):
    if reset_timer:
      t_loop_start = time.time()
      reset_timer = False
    lr = learning_rate_fn(step)
    state, stats, keys = train_pstep(keys, state, batch, lr)
    if jax.host_id() == 0:
      stats_trace.append(stats)
    if step % config.gc_every == 0: # The number of steps between garbage collections.
      gc.collect() #如果没有参数,运行完整的收集。可选参数可以是指定要收集哪generation的整数。如果generation无效,将引发ValueError。

Log training summaries

这被放在host_id检查之后,因为在多主机评估中,所有主机都需要运行推理,即使我们只使用host 0来记录结果。

    # Log training summaries. This is put behind a host_id check because in multi-host evaluation, all hosts need to run inference even though we only use host 0 to record results.
    if jax.host_id() == 0:
      if step % config.print_every == 0:
        summary_writer.scalar('num_params', num_params, step)
        summary_writer.scalar('train_loss', stats.loss[0], step)
        summary_writer.scalar('train_psnr', stats.psnr[0], step)
        for i, l in enumerate(stats.losses[0]):
          summary_writer.scalar(f'train_losses_{i}', l, step)
        for i, p in enumerate(stats.psnrs[0]):
          summary_writer.scalar(f'train_psnrs_{i}', p, step)
        summary_writer.scalar('weight_l2', stats.weight_l2[0], step)
        avg_loss = np.mean(np.concatenate([s.loss for s in stats_trace]))
        avg_psnr = np.mean(np.concatenate([s.psnr for s in stats_trace]))
        max_grad_norm = np.max(
            np.concatenate([s.grad_norm for s in stats_trace]))
        avg_grad_norm = np.mean(
            np.concatenate([s.grad_norm for s in stats_trace]))
        max_clipped_grad_norm = np.max(
            np.concatenate([s.grad_norm_clipped for s in stats_trace]))
        max_grad_max = np.max(
            np.concatenate([s.grad_abs_max for s in stats_trace]))
        stats_trace = []
        summary_writer.scalar('train_avg_loss', avg_loss, step)
        summary_writer.scalar('train_avg_psnr', avg_psnr, step)
        summary_writer.scalar('train_max_grad_norm', max_grad_norm, step)
        summary_writer.scalar('train_avg_grad_norm', avg_grad_norm, step)
        summary_writer.scalar('train_max_clipped_grad_norm',
                              max_clipped_grad_norm, step)
        summary_writer.scalar('train_max_grad_max', max_grad_max, step)
        summary_writer.scalar('learning_rate', lr, step)
        steps_per_sec = config.print_every / (time.time() - t_loop_start)
        reset_timer = True
        rays_per_sec = config.batch_size * steps_per_sec
        summary_writer.scalar('train_steps_per_sec', steps_per_sec, step)
        summary_writer.scalar('train_rays_per_sec', rays_per_sec, step)
        precision = int(np.ceil(np.log10(config.max_steps))) + 1
        print(('{:' + '{:d}'.format(precision) + 'd}').format(step) +
              f'/{config.max_steps:d}: ' + f'i_loss={stats.loss[0]:0.4f}, ' +
              f'avg_loss={avg_loss:0.4f}, ' +
              f'weight_l2={stats.weight_l2[0]:0.2e}, ' + f'lr={lr:0.2e}, ' +
              f'{rays_per_sec:0.0f} rays/sec')
              
      if step % config.save_every == 0:
        state_to_save = jax.device_get(jax.tree_map(lambda x: x[0], state))
        checkpoints.save_checkpoint(
            FLAGS.train_dir, state_to_save, int(step), keep=100)

Test-set evaluation

    # Test-set evaluation.
    if FLAGS.render_every > 0 and step % FLAGS.render_every == 0:
      # 我们有意重用优化步骤中的同一个随机数生成器,以便可视化与训练中发生的情况相匹配。.
      t_eval_start = time.time()
      eval_variables = jax.device_get(jax.tree_map(lambda x: x[0],
                                                   state)).optimizer.target
      test_case = next(test_dataset)
      pred_color, pred_distance, pred_acc = models.render_image(
          functools.partial(render_eval_pfn, eval_variables),
          test_case['rays'],
          keys[0],
          chunk=FLAGS.chunk)

      vis_suite = vis.visualize_suite(pred_distance, pred_acc)

      # Log eval summaries on host 0.
      if jax.host_id() == 0:
        psnr = math.mse_to_psnr(((pred_color - test_case['pixels'])**2).mean())
        ssim = ssim_fn(pred_color, test_case['pixels'])
        eval_time = time.time() - t_eval_start
        num_rays = jnp.prod(jnp.array(test_case['rays'].directions.shape[:-1]))
        rays_per_sec = num_rays / eval_time
        summary_writer.scalar('test_rays_per_sec', rays_per_sec, step)
        print(f'Eval {step}: {eval_time:0.3f}s., {rays_per_sec:0.0f} rays/sec')
        summary_writer.scalar('test_psnr', psnr, step)
        summary_writer.scalar('test_ssim', ssim, step)
        summary_writer.image('test_pred_color', pred_color, step)
        for k, v in vis_suite.items():
          summary_writer.image('test_pred_' + k, v, step)
        summary_writer.image('test_pred_acc', pred_acc, step)
        summary_writer.image('test_target', test_case['pixels'], step)

存储最终的训练模型

  if config.max_steps % config.save_every != 0:
    state = jax.device_get(jax.tree_map(lambda x: x[0], state))
    checkpoints.save_checkpoint(
        FLAGS.train_dir, state, int(config.max_steps), keep=100)

def train_step

一个优化步骤

def train_step(model, config, rng, state, batch, lr):
  """One optimization step.

  Args:
    model: The linen model.
    config: The configuration.
    rng: jnp.ndarray, random number generator.
    state: utils.TrainState, state of the model/optimizer.
    batch: dict, a mini-batch of data for training.
    lr: float, real-time learning rate.

  Returns:
    new_state: utils.TrainState, new training state.
    stats: list. [(loss, psnr), (loss_coarse, psnr_coarse)].
    rng: jnp.ndarray, updated random number generator.
  """
  rng, key = random.split(rng)

  def loss_fn(variables):

    def tree_sum_fn(fn):
      return jax.tree_util.tree_reduce(
          lambda x, y: x + fn(y), variables, initializer=0)

    weight_l2 = config.weight_decay_mult * (
        tree_sum_fn(lambda z: jnp.sum(z**2)) /
        tree_sum_fn(lambda z: jnp.prod(jnp.array(z.shape))))

    ret = model.apply(
        variables,
        key,
        batch['rays'],
        randomized=config.randomized,
        white_bkgd=config.white_bkgd)

    mask = batch['rays'].lossmult
    if config.disable_multiscale_loss:
      mask = jnp.ones_like(mask)

    losses = []
    for (rgb, _, _) in ret:
      losses.append(
          (mask * (rgb - batch['pixels'][..., :3])**2).sum() / mask.sum())
    losses = jnp.array(losses)

    loss = (
        config.coarse_loss_mult * jnp.sum(losses[:-1]) + losses[-1] + weight_l2)

    stats = utils.Stats(
        loss=loss,
        losses=losses,
        weight_l2=weight_l2,
        psnr=0.0,
        psnrs=0.0,
        grad_norm=0.0,
        grad_abs_max=0.0,
        grad_norm_clipped=0.0,
    )
    return loss, stats

  (_, stats), grad = (
      jax.value_and_grad(loss_fn, has_aux=True)(state.optimizer.target))
  grad = jax.lax.pmean(grad, axis_name='batch')
  stats = jax.lax.pmean(stats, axis_name='batch')

  def tree_norm(tree):
    return jnp.sqrt(
        jax.tree_util.tree_reduce(
            lambda x, y: x + jnp.sum(y**2), tree, initializer=0))

  if config.grad_max_val > 0:
    clip_fn = lambda z: jnp.clip(z, -config.grad_max_val, config.grad_max_val)
    grad = jax.tree_util.tree_map(clip_fn, grad)

  grad_abs_max = jax.tree_util.tree_reduce(
      lambda x, y: jnp.maximum(x, jnp.max(jnp.abs(y))), grad, initializer=0)

  grad_norm = tree_norm(grad)
  if config.grad_max_norm > 0:
    mult = jnp.minimum(1, config.grad_max_norm / (1e-7 + grad_norm))
    grad = jax.tree_util.tree_map(lambda z: mult * z, grad)
  grad_norm_clipped = tree_norm(grad)

  new_optimizer = state.optimizer.apply_gradient(grad, learning_rate=lr)
  new_state = state.replace(optimizer=new_optimizer)

  psnrs = math.mse_to_psnr(stats.losses)
  stats = utils.Stats(
      loss=stats.loss,
      losses=stats.losses,
      weight_l2=stats.weight_l2,
      psnr=psnrs[-1],
      psnrs=psnrs,
      grad_norm=grad_norm,
      grad_abs_max=grad_abs_max,
      grad_norm_clipped=grad_norm_clipped,
  )

  return new_state, stats, rng

class MipNerfModel

@gin.configurable
class MipNerfModel(nn.Module):
  """Nerf NN Model with both coarse and fine MLPs."""
  num_samples: int = 128  # The number of samples per level.
  num_levels: int = 2  # The number of sampling levels.
  resample_padding: float = 0.01  # Dirichlet/alpha "padding" on the histogram.
  stop_level_grad: bool = True  # If True, don't backprop across levels')
  use_viewdirs: bool = True  # If True, use view directions as a condition.
  lindisp: bool = False  # If True, sample linearly in disparity视差, not in depth.
  ray_shape: str = 'cone'  # The shape of cast rays ('cone' or 'cylinder'圆柱体).
  min_deg_point: int = 0  # Min degree of positional encoding for 3D points.
  max_deg_point: int = 16  # Max degree of positional encoding for 3D points.
  deg_view: int = 4  # Degree of positional encoding for viewdirs.
  density_activation: Callable[..., Any] = nn.softplus  # Density activation.
  density_noise: float = 0.  # Standard deviation of noise added to raw density.
  density_bias: float = -1.  # The shift added to raw densities pre-activation.
  rgb_activation: Callable[..., Any] = nn.sigmoid  # The RGB activation.
  rgb_padding: float = 0.001  # Padding added to the RGB outputs.
  disable_integration: bool = False  # If True, use PE instead of IPE.

self值

MipNerfModel(
    # attributes
    num_samples = 128
    num_levels = 2
    resample_padding = 0.01
    stop_level_grad = True
    use_viewdirs = True
    lindisp = False
    ray_shape = 'cone'
    min_deg_point = 0
    max_deg_point = 16
    deg_view = 4
    density_activation = softplus
    density_noise = 0.0
    density_bias = -1.0
    rgb_activation = sigmoid
    rgb_padding = 0.001
    disable_integration = False
    # children
    MLP_0 = MLP(
        # attributes
        net_depth = 8
        net_width = 256
        net_depth_condition = 1
        net_width_condition = 128
        net_activation = relu
        skip_layer = 4
        num_rgb_channels = 3
        num_density_channels = 1
    )
)

def call

  @nn.compact
  def __call__(self, rng, rays, randomized, white_bkgd):
    """The mip-NeRF Model.

    Args:
      rng: jnp.ndarray, random number generator.
      rays: util.Rays, a namedtuple命名元组 of ray origins, directions, and viewdirs.
      randomized: bool, 使用随机分层抽样.
      white_bkgd: bool, if True, use white as the background (black o.w.).

    Returns:
      ret: list, [*(rgb, distance, acc)]
    """
    # Construct the MLP.
    mlp = MLP()

    ret = []
    for i_level in range(self.num_levels):
      key, rng = random.split(rng)

分层采样策略

      if i_level == 0:
        # Stratified sampling along rays
        t_vals, samples = mip.sample_along_rays(
            key,
            rays.origins,
            rays.directions,
            rays.radii,
            self.num_samples,
            rays.near,
            rays.far,
            randomized,
            self.lindisp,
            self.ray_shape,
        )
      else:
        t_vals, samples = mip.resample_along_rays(
            key,
            rays.origins,
            rays.directions,
            rays.radii,
            t_vals,
            weights,
            randomized,
            self.ray_shape,
            self.stop_level_grad,
            resample_padding=self.resample_padding,
        )

def sample_along_rays

沿射线分层取样

def sample_along_rays(key, origins, directions, radii, num_samples, near, far,
                      randomized, lindisp, ray_shape):
  """Stratified sampling along the rays.

  Args:
    key: jnp.ndarray, random generator key.
    origins: jnp.ndarray(float32), [batch_size, 3], ray origins.
    directions: jnp.ndarray(float32), [batch_size, 3], ray directions.
    radii: jnp.ndarray(float32), [batch_size, 3], ray radii.
    num_samples: int.
    near: jnp.ndarray, [batch_size, 1], near clip.
    far: jnp.ndarray, [batch_size, 1], far clip.
    randomized: bool, 使用**随机**分层抽样.
    lindisp: bool, 在视差而不是深度上线性采样.
    ray_shape: string, 假设光线为哪种形状.

  Returns:
    t_vals: jnp.ndarray, [batch_size, num_samples], sampled z values.
    means: jnp.ndarray, [batch_size, num_samples, 3], sampled means.
    covs: jnp.ndarray, [batch_size, num_samples, 3, 3], sampled covariances协方差.
  """
  batch_size = origins.shape[0]

  t_vals = jnp.linspace(0., 1., num_samples + 1)
  if lindisp:
    t_vals = 1. / (1. / near * (1. - t_vals) + 1. / far * t_vals)
  else:
    t_vals = near * (1. - t_vals) + far * t_vals

  if randomized:
    mids = 0.5 * (t_vals[..., 1:] + t_vals[..., :-1])
    upper = jnp.concatenate([mids, t_vals[..., -1:]], -1)
    lower = jnp.concatenate([t_vals[..., :1], mids], -1)
    t_rand = random.uniform(key, [batch_size, num_samples + 1])
    t_vals = lower + (upper - lower) * t_rand
  else:
    # Broadcast t_vals to make the returned shape consistent.广播t _ vals使返回的形状一致
    t_vals = jnp.broadcast_to(t_vals, [batch_size, num_samples + 1])
  means, covs = cast_rays(t_vals, origins, directions, radii, ray_shape)
  return t_vals, (means, covs)

投射光线(圆锥形或圆柱形)并特征化其截面,求均值和协方差

def cast_rays(t_vals, origins, directions, radii, ray_shape, diag=True):
  """Cast rays (cone- or cylinder-shaped) and featurize sections of it.

  Args:
    t_vals: float array, the "fencepost" distances along the ray.沿着射线的“fencepost”距离。
    origins: float array, the ray origin coordinates.
    directions: float array, the ray direction vectors.
    radii: float array, the radii (base radii for cones) of the rays.光线的半径(圆锥的底半径)。
    ray_shape: string, the shape of the ray, must be 'cone' or 'cylinder'.
    diag: boolean, whether or not the covariance matrices should be diagonal.协方差矩阵是否应该是对角的。

  Returns:
    a tuple of arrays of means and covariances.
  """
  t0 = t_vals[..., :-1]
  t1 = t_vals[..., 1:]
  if ray_shape == 'cone':
    gaussian_fn = conical_frustum_to_gaussian
  elif ray_shape == 'cylinder':
    gaussian_fn = cylinder_to_gaussian
  else:
    assert False
  means, covs = gaussian_fn(directions, t0, t1, radii, diag)
  means = means + origins[..., None, :]
  return means, covs

t_vals

[[2.      2.03125 2.0625  ... 5.9375  5.96875 6.     ]
 [2.      2.03125 2.0625  ... 5.9375  5.96875 6.     ]
 [2.      2.03125 2.0625  ... 5.9375  5.96875 6.     ]
 ...
 [2.      2.03125 2.0625  ... 5.9375  5.96875 6.     ]
 [2.      2.03125 2.0625  ... 5.9375  5.96875 6.     ]
 [2.      2.03125 2.0625  ... 5.9375  5.96875 6.     ]]

位置编码 PE/IPE

self.disable_integration If True, use PE instead of IPE.

      if self.disable_integration:
        samples = (samples[0], jnp.zeros_like(samples[1]))
      samples_enc = mip.integrated_pos_enc(
          samples,
          self.min_deg_point,
          self.max_deg_point,
      )

def integrated_pos_enc
用2^[min_deg:max_deg-1缩放的正弦曲线编码“x”

def integrated_pos_enc(x_coord, min_deg, max_deg, diag=True):
  """Encode `x` with sinusoids scaled by 2^[min_deg:max_deg-1].

  Args:
    x_coord: a tuple containing: x, jnp.ndarray, variables to be encoded. Should
      be in [-pi, pi]. x_cov, jnp.ndarray, covariance matrices for `x`.
    min_deg: int, the min degree of the encoding.
    max_deg: int, the max degree of the encoding.
    diag: bool, if true, expects input covariances to be diagonal (full
      otherwise).

  Returns:
    encoded: jnp.ndarray, encoded variables.
  """
  if diag:
    x, x_cov_diag = x_coord
    scales = jnp.array([2**i for i in range(min_deg, max_deg)])
    shape = list(x.shape[:-1]) + [-1]
    y = jnp.reshape(x[..., None, :] * scales[:, None], shape)
    y_var = jnp.reshape(x_cov_diag[..., None, :] * scales[:, None]**2, shape)
  else:
    x, x_cov = x_coord
    num_dims = x.shape[-1]
    basis = jnp.concatenate(
        [2**i * jnp.eye(num_dims) for i in range(min_deg, max_deg)], 1)
    y = math.matmul(x, basis)
    # Get the diagonal of a covariance matrix (ie, variance). This is equivalent
    # to jax.vmap(jnp.diag)((basis.T @ covs) @ basis).
    y_var = jnp.sum((math.matmul(x_cov, basis)) * basis, -2)

  return expected_sin(
      jnp.concatenate([y, y + 0.5 * jnp.pi], axis=-1),
      jnp.concatenate([y_var] * 2, axis=-1))[0]

在这里插入图片描述
估计sin(z),z~N(x,var)的均值和方差

def expected_sin(x, x_var):
  """Estimates mean and variance of sin(z), z ~ N(x, var)."""
  # 当方差很大时,将sin向零收缩.
  y = jnp.exp(-0.5 * x_var) * math.safe_sin(x)
  y_var = jnp.maximum(
      0, 0.5 * (1 - jnp.exp(-2 * x_var) * math.safe_cos(2 * x)) - y**2)
  return y, y_var

点属性预测 raw_rgb, raw_density

raw_rgb, raw_density = mlp(samples_enc, viewdirs_enc)
raw_rgb, raw_density = mlp(samples_enc)

      # Point attribute predictions
      if self.use_viewdirs:
        viewdirs_enc = mip.pos_enc(
            rays.viewdirs,
            min_deg=0,
            max_deg=self.deg_view,
            append_identity=True,
        )
        raw_rgb, raw_density = mlp(samples_enc, viewdirs_enc)
      else:
        raw_rgb, raw_density = mlp(samples_enc)

def pos_enc
原始NeRF文件使用的位置编码。
在这里插入图片描述

def pos_enc(x, min_deg, max_deg, append_identity=True):
  """The positional encoding used by the original NeRF paper."""
  scales = jnp.array([2**i for i in range(min_deg, max_deg)])
  xb = jnp.reshape((x[..., None, :] * scales[:, None]),
                   list(x.shape[:-1]) + [-1])
  four_feat = jnp.sin(jnp.concatenate([xb, xb + 0.5 * jnp.pi], axis=-1))
  if append_identity:
    return jnp.concatenate([x] + [four_feat], axis=-1)
  else:
    return four_feat

体积渲染

如果需要,添加噪音以调整密度预测。

      # Add noise to regularize the density predictions if needed.
      if randomized and (self.density_noise > 0):
        key, rng = random.split(rng)
        raw_density += self.density_noise * random.normal(
            key, raw_density.shape, dtype=raw_density.dtype)
      # Volumetric rendering.
      rgb = self.rgb_activation(raw_rgb)
      rgb = rgb * (1 + 2 * self.rgb_padding) - self.rgb_padding
      density = self.density_activation(raw_density + self.density_bias)
      comp_rgb, distance, acc, weights = mip.volumetric_rendering(
          rgb,
          density,
          t_vals,
          rays.directions,
          white_bkgd=white_bkgd,
      )
      ret.append((comp_rgb, distance, acc))

    return ret

ret
两个level 三个属性值(comp_rgb, distance, acc)
在这里插入图片描述

def volumetric_rendering

在这里插入图片描述
在这里插入图片描述
σi : 密度

def volumetric_rendering(rgb, density, t_vals, dirs, white_bkgd):
  """Volumetric Rendering Function.

  Args:
    rgb: jnp.ndarray(float32), color, [batch_size, num_samples, 3]
    density: jnp.ndarray(float32), density, [batch_size, num_samples, 1].
    t_vals: jnp.ndarray(float32), [batch_size, num_samples].
    dirs: jnp.ndarray(float32), [batch_size, 3].
    white_bkgd: bool.

  Returns:
    comp_rgb: jnp.ndarray(float32), [batch_size, 3].
    disp: jnp.ndarray(float32), [batch_size].
    acc: jnp.ndarray(float32), [batch_size].
    weights: jnp.ndarray(float32), [batch_size, num_samples]
  """
  t_mids = 0.5 * (t_vals[..., :-1] + t_vals[..., 1:])
  t_dists = t_vals[..., 1:] - t_vals[..., :-1]
  delta = t_dists * jnp.linalg.norm(dirs[..., None, :], axis=-1)
  # Note that we're quietly turning density from [..., 0] to [...].
  density_delta = density[..., 0] * delta

  alpha = 1 - jnp.exp(-density_delta)
  trans = jnp.exp(-jnp.concatenate([
      jnp.zeros_like(density_delta[..., :1]),
      jnp.cumsum(density_delta[..., :-1], axis=-1)
  ],
                                   axis=-1))
  weights = alpha * trans

  comp_rgb = (weights[..., None] * rgb).sum(axis=-2)
  acc = weights.sum(axis=-1)
  distance = (weights * t_mids).sum(axis=-1) / acc
  distance = jnp.clip(
      jnp.nan_to_num(distance, jnp.inf), t_vals[:, 0], t_vals[:, -1])
  if white_bkgd:
    comp_rgb = comp_rgb + (1. - acc[..., None])
  return comp_rgb, distance, acc, weights

class MLP

@gin.configurable
class MLP(nn.Module):
  """A simple MLP."""
  net_depth: int = 8  # The depth of the first part of MLP.
  net_width: int = 256  # The width of the first part of MLP.
  net_depth_condition: int = 1  # The depth of the second part of MLP.
  net_width_condition: int = 128  # The width of the second part of MLP.
  net_activation: Callable[..., Any] = nn.relu  # The activation function.
  skip_layer: int = 4  # Add a skip connection to the output of every N layers.向每N层的输出添加一个跳过连接
  num_rgb_channels: int = 3  # The number of RGB channels.
  num_density_channels: int = 1  # The number of density channels.

def call

  @nn.compact
  def __call__(self, x, condition=None):
    """Evaluate the MLP.

    Args:
      x: jnp.ndarray(float32), [batch, num_samples, feature], points.
      condition: jnp.ndarray(float32), [batch, feature], if not None, this
        variable will be part of the input to the second part of the MLP
        concatenated with the output vector of the first part of the MLP. If
        None, only the first part of the MLP will be used with input x. In the
        original paper, this variable is the view direction.

    Returns:
      raw_rgb: jnp.ndarray(float32), with a shape of
           [batch, num_samples, num_rgb_channels].
      raw_density: jnp.ndarray(float32), with a shape of
           [batch, num_samples, num_density_channels].
    """
    feature_dim = x.shape[-1]
    num_samples = x.shape[1]
    x = x.reshape([-1, feature_dim])
    dense_layer = functools.partial(
        nn.Dense, kernel_init=jax.nn.initializers.glorot_uniform())
    inputs = x
    for i in range(self.net_depth):
      x = dense_layer(self.net_width)(x)
      x = self.net_activation(x)
      if i % self.skip_layer == 0 and i > 0:
        x = jnp.concatenate([x, inputs], axis=-1)
    raw_density = dense_layer(self.num_density_channels)(x).reshape(
        [-1, num_samples, self.num_density_channels])

    if condition is not None:
      # Output of the first part of MLP.
      bottleneck = dense_layer(self.net_width)(x)
      # Broadcast condition from [batch, feature] to
      # [batch, num_samples, feature] since all the samples along the same ray
      # have the same viewdir.
      condition = jnp.tile(condition[:, None, :], (1, num_samples, 1))
      # Collapse the [batch, num_samples, feature] tensor to
      # [batch * num_samples, feature] so that it can be fed into nn.Dense.
      condition = condition.reshape([-1, condition.shape[-1]])
      x = jnp.concatenate([bottleneck, condition], axis=-1)
      # Here use 1 extra layer to align with the original nerf model.
      for i in range(self.net_depth_condition):
        x = dense_layer(self.net_width_condition)(x)
        x = self.net_activation(x)
    raw_rgb = dense_layer(self.num_rgb_channels)(x).reshape(
        [-1, num_samples, self.num_rgb_channels])
    return raw_rgb, raw_density

在这里插入图片描述

jax

pmap

  train_pstep = jax.pmap(
      functools.partial(train_step, model, config),
      axis_name='batch',
      in_axes=(0, 0, 0, None),
      donate_argnums=(2,))

支持集体行动的并行映射

def pmap(
  fun: F,
  axis_name: Optional[AxisName] = None,
  *,
  in_axes=0,
  out_axes=0,
  static_broadcasted_argnums: Union[int, Iterable[int]] = (),
  devices: Optional[Sequence[xc.Device]] = None,
  backend: Optional[str] = None,
  axis_size: Optional[int] = None,
  donate_argnums: Union[int, Iterable[int]] = (),
  global_arg_shapes: Optional[Tuple[Tuple[int, ...], ...]] = None,
) -> F:
  """Parallel map with support for collective operations.

  The purpose of :py:func:`pmap` 是表示单程序多数据 (SPMD)程序. Applying :py:func:`pmap` to a function 
  将编译 函数(类似于:py:func:`jit ` ),然后并行执行它 在XLA设备上,例如多个GPU或多个TPU核心. 
  语义上它与:py:func:`vmap '相当,因为两种转换都映射一个函数 阵列轴上, 
  但是 :py:func:`vmap '通过将 将轴向下映射到原始操作, 
  :py:func:`pmap '改为复制 函数,并在其自己的XLA设备上并行执行每个复制副本。

  映射的轴大小必须小于或等于本地XLA的数量 可用设备, 如:py:func:` jax . local _ device _ count()`(除非 指定了“设备”,见下文).
  对于嵌套的:py:func:`pmap '调用,映射轴大小的乘积必须小于或等于XLA设备的数量。

  .. note::
    :py:func:`pmap` compiles ``fun``, 因此,虽然它可以与:py:func:`jit '结合使用,但通常是不必要的。

  **Multi-process platforms:** On multi-process platforms such as TPU pods,
  :py:func:`pmap` is designed to be used in SPMD Python programs, where every
  process is running the same Python code such that all processes run the same
  pmapped function in the same order. Each process should still call the pmapped
  function with mapped axis size equal to the number of *local* devices (unless
  ``devices`` is specified, see below), and an array of the same leading axis
  size will be returned as usual. However, any collective operations in ``fun``
  will be computed over *all* participating devices, including those on other
  processes, via device-to-device communication.  Conceptually, this can be
  thought of as running a pmap over a single array sharded across processes,
  where each process "sees" only its local shard of the input and output. The
  SPMD model requires that the same multi-process pmaps must be run in the same
  order on all devices, but they can be interspersed with arbitrary operations
  running in a single process.

  Args:
    fun: Function to be mapped over argument axes. Its arguments and return
      value should be arrays, scalars, or (nested) standard Python containers
      (tuple/list/dict) thereof. Positional arguments indicated by
      ``static_broadcasted_argnums`` can be anything at all, provided they are
      hashable and have an equality operation defined.
    axis_name: Optional, a hashable Python object used to identify the mapped
      axis so that parallel collectives can be applied.
    in_axes: A non-negative integer, None, or nested Python container thereof
      that specifies which axes of positional arguments to map over. Arguments
      passed as keywords are always mapped over their leading axis (i.e. axis
      index 0). See :py:func:`vmap` for details.
    out_axes: A non-negative integer, None, or nested Python container thereof
      indicating where the mapped axis should appear in the output. All outputs
      with a mapped axis must have a non-None ``out_axes`` specification
      (see :py:func:`vmap`).
    static_broadcasted_argnums: An int or collection of ints specifying which
      positional arguments to treat as static (compile-time constant).
      Operations that only depend on static arguments will be constant-folded.
      Calling the pmapped function with different values for these constants
      will trigger recompilation. If the pmapped function is called with fewer
      positional arguments than indicated by ``static_argnums`` then an error is
      raised. Each of the static arguments will be broadcasted to all devices.
      Arguments that are not arrays or containers thereof must be marked as
      static. Defaults to ().
    devices: This is an experimental feature and the API is likely to change.
      Optional, a sequence of Devices to map over. (Available devices can be
      retrieved via jax.devices()). Must be given identically for each process
      in multi-process settings (and will therefore include devices across
      processes). If specified, the size of the mapped axis must be equal to
      the number of devices in the sequence local to the given process. Nested
      :py:func:`pmap` s with ``devices`` specified in either the inner or outer
      :py:func:`pmap` are not yet supported.
    backend: This is an experimental feature and the API is likely to change.
      Optional, a string representing the XLA backend. 'cpu', 'gpu', or 'tpu'.
    axis_size: Optional; the size of the mapped axis.
    donate_argnums: Specify which arguments are "donated" to the computation.
      It is safe to donate arguments if you no longer need them once the
      computation has finished. In some cases XLA can make use of donated
      buffers to reduce the amount of memory needed to perform a computation,
      for example recycling one of your input buffers to store a result. You
      should not reuse buffers that you donate to a computation, JAX will raise
      an error if you try to.
    global_arg_shapes: Optional, must be set when using pmap(sharded_jit) and
      the partitioned values span multiple processes. The global cross-process
      per-replica shape of each argument, i.e. does not include the leading
      pmapped dimension. Can be None for replicated arguments. This API is
      likely to change in the future.

  Returns:
    A parallelized version of ``fun`` with arguments that correspond to those of
    ``fun`` but with extra array axes at positions indicated by ``in_axes`` and
    with output that has an additional leading array axis (with the same size).

  For example, assuming 8 XLA devices are available, :py:func:`pmap` can be used
  as a map along a leading array axis:

  >>> import jax.numpy as jnp
  >>>
  >>> out = pmap(lambda x: x ** 2)(jnp.arange(8))  # doctest: +SKIP
  >>> print(out)  # doctest: +SKIP
  [0, 1, 4, 9, 16, 25, 36, 49]

  When the leading dimension is smaller than the number of available devices JAX
  will simply run on a subset of devices:

  >>> x = jnp.arange(3 * 2 * 2.).reshape((3, 2, 2))
  >>> y = jnp.arange(3 * 2 * 2.).reshape((3, 2, 2)) ** 2
  >>> out = pmap(jnp.dot)(x, y)  # doctest: +SKIP
  >>> print(out)  # doctest: +SKIP
  [[[    4.     9.]
    [   12.    29.]]
   [[  244.   345.]
    [  348.   493.]]
   [[ 1412.  1737.]
    [ 1740.  2141.]]]

  If your leading dimension is larger than the number of available devices you
  will get an error:

  >>> pmap(lambda x: x ** 2)(jnp.arange(9))  # doctest: +SKIP
  ValueError: ... requires 9 replicas, but only 8 XLA devices are available

  As with :py:func:`vmap`, using ``None`` in ``in_axes`` indicates that an
  argument doesn't have an extra axis and should be broadcasted, rather than
  mapped, across the replicas:

  >>> x, y = jnp.arange(2.), 4.
  >>> out = pmap(lambda x, y: (x + y, y * 2.), in_axes=(0, None))(x, y)  # doctest: +SKIP
  >>> print(out)  # doctest: +SKIP
  ([4., 5.], [8., 8.])

  Note that :py:func:`pmap` always returns values mapped over their leading axis,
  equivalent to using ``out_axes=0`` in :py:func:`vmap`.

  In addition to expressing pure maps, :py:func:`pmap` can also be used to express
  parallel single-program multiple-data (SPMD) programs that communicate via
  collective operations. For example:

  >>> f = lambda x: x / jax.lax.psum(x, axis_name='i')
  >>> out = pmap(f, axis_name='i')(jnp.arange(4.))  # doctest: +SKIP
  >>> print(out)  # doctest: +SKIP
  [ 0.          0.16666667  0.33333334  0.5       ]
  >>> print(out.sum())  # doctest: +SKIP
  1.0

  In this example, ``axis_name`` is a string, but it can be any Python object
  with ``__hash__`` and ``__eq__`` defined.

  The argument ``axis_name`` to :py:func:`pmap` names the mapped axis so that
  collective operations, like :func:`jax.lax.psum`, can refer to it. Axis names
  are important particularly in the case of nested :py:func:`pmap` functions,
  where collective operations can operate over distinct axes:

  >>> from functools import partial
  >>> import jax
  >>>
  >>> @partial(pmap, axis_name='rows')
  ... @partial(pmap, axis_name='cols')
  ... def normalize(x):
  ...   row_normed = x / jax.lax.psum(x, 'rows')
  ...   col_normed = x / jax.lax.psum(x, 'cols')
  ...   doubly_normed = x / jax.lax.psum(x, ('rows', 'cols'))
  ...   return row_normed, col_normed, doubly_normed
  >>>
  >>> x = jnp.arange(8.).reshape((4, 2))
  >>> row_normed, col_normed, doubly_normed = normalize(x)  # doctest: +SKIP
  >>> print(row_normed.sum(0))  # doctest: +SKIP
  [ 1.  1.]
  >>> print(col_normed.sum(1))  # doctest: +SKIP
  [ 1.  1.  1.  1.]
  >>> print(doubly_normed.sum((0, 1)))  # doctest: +SKIP
  1.0

  On multi-process platforms, collective operations operate over all devices,
  including those on other processes. For example, assuming the following code
  runs on two processes with 4 XLA devices each:

  >>> f = lambda x: x + jax.lax.psum(x, axis_name='i')
  >>> data = jnp.arange(4) if jax.process_index() == 0 else jnp.arange(4, 8)
  >>> out = pmap(f, axis_name='i')(data)  # doctest: +SKIP
  >>> print(out)  # doctest: +SKIP
  [28 29 30 31] # on process 0
  [32 33 34 35] # on process 1

  Each process passes in a different length-4 array, corresponding to its 4
  local devices, and the psum operates over all 8 values. Conceptually, the two
  length-4 arrays can be thought of as a sharded length-8 array (in this example
  equivalent to jnp.arange(8)) that is mapped over, with the length-8 mapped
  axis given name 'i'. The pmap call on each process then returns the
  corresponding length-4 output shard.

  The ``devices`` argument can be used to specify exactly which devices are used
  to run the parallel computation. For example, again assuming a single process
  with 8 devices, the following code defines two parallel computations, one
  which runs on the first six devices and one on the remaining two:

  >>> from functools import partial
  >>> @partial(pmap, axis_name='i', devices=jax.devices()[:6])
  ... def f1(x):
  ...   return x / jax.lax.psum(x, axis_name='i')
  >>>
  >>> @partial(pmap, axis_name='i', devices=jax.devices()[-2:])
  ... def f2(x):
  ...   return jax.lax.psum(x ** 2, axis_name='i')
  >>>
  >>> print(f1(jnp.arange(6.)))  # doctest: +SKIP
  [0.         0.06666667 0.13333333 0.2        0.26666667 0.33333333]
  >>> print(f2(jnp.array([2., 3.])))  # doctest: +SKIP
  [ 13.  13.]
  """
  # axis_size is an optional integer representing the global axis size.  The
  # aggregate size (across all processes) size of the mapped axis must match the
  # given value.
  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-05-06 11:03:14  更:2022-05-06 11:03:32 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/4 16:07:25-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码