IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 有监督对比学习在分类任务中的应用 Supervised Contrastive Learning -> 正文阅读

[人工智能]有监督对比学习在分类任务中的应用 Supervised Contrastive Learning

1.对比学习一般泛式

在这里插入图片描述

其中x+是和x相似的正样本,x-是和x不相似的负样本
score是一个度量函数,来衡量样本间的相似度。
如果用向量内积来计算两个样本的相似度,则对比学习的损失函数可以表示成:
在这里插入图片描述

其中对应样本x有1个正样本和N-1个负样本。可以发现,这个形式类似于交叉熵损失函数,学习的目标就是让x的特征和正样本的特征更相似,同时和N-1个负样本的特征更不相似。

2.对比学习分类

「有监督对比学习」:通过将监督样本中的相同label的样本作为正样本,不同label的样本作为负样本,来进行对比学习;
正样本:同类型数据
负样本:不同类型数据
「无监督对比学习」:由于没有监督信号(label),此时,我们对同一个样本构造两个view,让同一样本构造的两个view互为正样本,而其他样本构造的view则全部为负样本,以此来进行对比学习。而由同一个样本构造两个view,又是数据扩增的过程,所以也可以称作是数据扩展对比学习。而不管那种范式,通常对比学习都是在batch内进行。
正样本:同一数据产生的增强数据
负样本:不同数据产生的增强数据

3.用于微调阶段的有监督的对比学习(SCL)

《Supervised Contrastive Learning for Pre-trained Language Model Fine-tuning》
在这里插入图片描述在多分类任务(使用交叉熵损失)中:
①交叉熵损失导致泛化性能较差。
②对有噪声的标签或对抗样本缺乏鲁棒性。
使用了监督对比学习的思路,额外添加了一个loss,目的是使同一类样本尽可能离得近,不同类样本尽可能离得远。
使得模型对微调训练数据中的不同程度的噪声具有更强的鲁棒性,并且可以更好地推广到具有有限标签数据的相关任务。

对于具有C个类的多类分类问题,我们使用一批大小为N的训练示例
分子:每一对同类型样本;分母:与i、j不同类型的全部样本。
在这里插入图片描述

较低的温度增加了较难分离的例子的影响,有效地产生了较难分离的负样本。

实验-小样本

在这里插入图片描述

实验-噪声

在这里插入图片描述

实验-全量

在这里插入图片描述

消融实验

针对不同batchsize的训练速度-平均每秒更新(Avg Ups/sec)
在这里插入图片描述

实验-泛化性

将使用完整的SST-2训练集进行微调后的模型推广到相关任务(Amazon-2,Yelp-2)
在这里插入图片描述

4.负监督下的文本分类

Text Classification with Negative Supervision
在这里插入图片描述
文本分类中的对抗样本问题:
当类别标注的标准与语义相似度不一致时,由于语义相似度的过度影响,分类容易出错。
在这里插入图片描述

提出了使用负样本提高文本分类模型的方法,这里的负样本类比对比学习的负样本

1.将分类任务作为主任务,另外加一个辨别性的学习任务作为辅助任务,主任务与辅助任务共享一个编码层;
2.主任务负责分类模型的训练,辅助任务在负样本的监督下,促使text encoder学习出更多相对label的差异性信息,使反例具有较小的余弦相似性。
每个batch中loss的计算:
在这里插入图片描述在这里插入图片描述

在这里插入图片描述在这里插入图片描述

实验-全量

在这里插入图片描述

· ACE (the auxiliary task with cross entropy loss) 证明提高效果的是负例而不是多任务学习。
· AAN(the auxiliary task using all negative examples)上文提到的方法
· AM (the auxiliary task with the margin-based loss) 第k个样本作为正例,类似于第一篇文章

在这里插入图片描述

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-05-06 11:03:14  更:2022-05-06 11:03:52 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/4 15:57:52-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码