IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 基于YOLO和PSPNet的目标检测与语义分割系统 -> 正文阅读

[人工智能]基于YOLO和PSPNet的目标检测与语义分割系统

基于YOLO和PSPNet的目标检测与语义分割系统

源代码地址

概述

这是我的本科毕业设计

它的主要功能是通过YOLOv5进行目标检测,并使用PSPNet进行语义分割。
本项目YOLOv5部分代码基于 ultralytics YOLO V5 tag v5.0
相应地,我也使用了ultralytics/YOLOv5的预训练模型。
我通常使用两个最简单的预训练模型–yolov5s.pt和yolov5s.pt。你可以在./weights中直接看到它们。
在语义分割部分,我使用了PSPNet(全称为 Pyramid Scene Parsing Network
,即金字塔场景解析网络,此网络模型于2017年在CVPR上提出。
在我看来,这是性能和简洁性之间平衡得最好的网络之一。
事实上,在我拿到YOLOv5源代码后,我只花了一点时间就完成主要部分,而我花了大部分剩余时间将此模块与YOLO结合使用。

演示

典型的一组处理结果

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-atTo2il0-1651741499083)(demo_image/38.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-U61zCEGy-1651741499086)(demo_image/39.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-n9SRgvFZ-1651741499087)(demo_image/40.png)]

文件和文件夹

./weights

该文件夹包含四个训练前文件。yolov5s.pt和yolov5m.pt是目标检测模型、pspv5s.pt和pspv5m.pt是语义分割模型。它们都有很好的性能,但由于我的显卡性能不足,分割模型仍然有一些缺点。
需要指出的是,“xx5m.pt”的性能要好于“xx5s.pt”,因为它的网络更加复杂。

./runs

此文件夹包含检测、测试或训练项目的结果。

./demo_image

此文件夹包含一些演示图像。

./data

此文件夹包含所有数据集。 我主要通过CityScapes数据集训练我的分割模型,并在目标检测部分采用了预训练模型。
当然,如果您想继续训练YOLOv5模型,您将使用Microsoft Coco数据集。

./models

这个文件夹对我来说是最重要的。
在Common.py中,我主要添加了三个模块,RFB2和FFM起辅助作用,金字塔池模块起到分割作用,这部分代码都是仿照 PSPNet 论文模型编写的。
当然,有很多模块来自于ultralytics/YOLOv5,我删除了所有未使用的模块。
在yolo.py中,我添加了一个名为SegMaskPSP的类,它集成了Common.py中提到的三个模块,当训练模型时,parse_model函数将调用它。

train.py

该python文件与ultralytics/YOLOv5中的train.py文件大致相同。当我研究YOLO算法的时候,我对其做了一些更改。
它看起来有很大变化,但主体结构没有改变。
您可以使用cmd代码
python Train.py--data ciyscapes_de.yaml--cfg yolov5s_City_Seg.yaml--批量大小18--纪元200--权重。/yolov5s.pt--工人8--标签平滑0.1--img-大小832--非自动锚定

训练你自己的模型
当然,如果显卡的性能不是很高,您可以尝试降低workers运算单元的数量和batch-size的大小。
当然,我建议你直接使用我的预训练模型,或者如果你不缺钱的话,可以去找一些云GPU平台(事实上,我已经去过一个叫AutoDL的网站很多次了)。

test.py

通过一些著名的指标,如准确率、召回率、F1等来测试您的模型的性能。
您可以使用cmd代码。
python test.py--data data/Cityscapes_Det.yaml--Segdata./data/citys--Weights/pspv5m.pt--img-size1024--base-size1024
来测试你的模型。

detect.py

如果你只想直接使用我的项目,这个文件对你来说可能是最重要的。
在文件中,您可以选择三种模式:①图像检测、②视频检测 和 ③摄像头实时检测。

predict.py

该python文件将调用detect.py进行检测
其他文件夹或文件来自ultralytics/YOLOv5,基本上无关紧要。

requirements.txt

您可以使用pip install -r requirements s.txt安装所有需要的包。
如果你使用的是Windows系统,你应该把txt文件中的‘pycotools’替换为‘pycoTools-windows’。
当然,我猜您在安装它们时会遇到一些错误。我建议您使用Conda来创建一个新的Python虚拟环境。安装Anaconda后,您可以启动“Anaconda PowerShell Prompt”。
创建虚拟环境的代码是conda create-n you_env_name python=x.x .
您也可以使用conda install-n you_env_name package_name来安装其他包。

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-05-06 11:03:14  更:2022-05-06 11:04:25 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/26 7:27:39-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码