IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> PaddlePaddle 中的 CTCGreedyDecoder -> 正文阅读

[人工智能]PaddlePaddle 中的 CTCGreedyDecoder

TensorFlow 中的 CTCGreedyDecoder 仅包含 CPU 实现。而 PaddlePaddle 框架则更贴近实际需求,可以在 GPU 上运行。简单来说,PaddlePaddle 内部通过拼接方式,先通过 topk 算子找到最大类别,然后通过 CTCAlignOp 完成后处理。TensorFlow 的输出格式为 SparseTensor,而 PaddlePaddle 支持 Tensor 和 LoDTensor 两种形式。

ctc_greedy_decoder

check_variable_and_dtype 检查变量的类型以及数据类型。
LayerHelper 主要是在各个 layers 函数之间共享代码。
内部调用 topk 算子得到最大概率类别的索引topk_indices

    check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                             'ctc_greedy_decoder')

    helper = LayerHelper("ctc_greedy_decoder", **locals())
    _, topk_indices = topk(input, k=1)

LayerHelperBase.create_variable_for_type_inference 创建临时变量。
lod 模式直接通过 ctc_align 来得到最终结果;padding 模式下输入是3维的,需要创建ctc_out_len并调用 squeeze 算子去掉最后一维。

    # ctc align op
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")

    if input_length is None:
        helper.append_op(
            type="ctc_align",
            inputs={"Input": [topk_indices]},
            outputs={"Output": [ctc_out]},
            attrs={"merge_repeated": True,
                   "blank": blank})
        return ctc_out
    else:
        ctc_out_len = helper.create_variable_for_type_inference(dtype="int64")
        ctc_input = squeeze(topk_indices, [2])

        helper.append_op(
            type="ctc_align",
            inputs={"Input": [ctc_input],
                    "InputLength": [input_length]},
            outputs={"Output": [ctc_out],
                     "OutputLength": [ctc_out_len]},
            attrs={
                "merge_repeated": True,
                "blank": blank,
                "padding_value": padding_value
            })
        return ctc_out, ctc_out_len

根据 REGISTER_OPERATOR 可以找到 Python 函数名和算子实现的对应关系。

CTCAlignOp

CTCAlignOp
OperatorWithKernel
OperatorBase

OperatorBase 是网络计算的基本元素。
OperatorWithKernel
OP_INOUT_CHECK 确保算子有输入输出。
OperatorWithKernel::IndicateVarDataType 获取变量数据类型。

class CTCAlignOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "ctc_align");
    OP_INOUT_CHECK(ctx->HasOutput("Output"), "Output", "Output", "ctc_align");

    auto input_dims = ctx->GetInputDim("Input");

    // TODO(wanghaoshuang): it is tricky to set the wrong dimension here.
    ctx->SetOutputDim("Output", input_dims);
    if (ctx->HasInput("InputLength")) {
      ctx->SetOutputDim("OutputLength", {input_dims[0], 1});
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "Input"),
        ctx.device_context());
  }
};

CTCAlignKernel

模板默认是 CPU 实现。

template <typename DeviceContext, typename T>
class CTCAlignKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<LoDTensor>("Input");
    auto* output = ctx.Output<LoDTensor>("Output");
    size_t blank = static_cast<size_t>(ctx.Attr<int>("blank"));
    bool merge_repeated = ctx.Attr<bool>("merge_repeated");
    T* output_data = output->mutable_data<T>(ctx.GetPlace());
    auto input_dims = input->dims();
    const T* input_data = input->data<T>();

如果是 padding 模式,处理时跳过空白。

    // support tensor input, no lod information
    if (input->lod().empty()) {
      size_t padding_value =
          static_cast<size_t>(ctx.Attr<int>("padding_value"));
      auto* input_length = ctx.Input<LoDTensor>("InputLength");
      const T* input_length_data = input_length->data<T>();

      auto* output_length = ctx.Output<LoDTensor>("OutputLength");
      T* output_length_data = output_length->mutable_data<T>(ctx.GetPlace());

      for (size_t batch_id = 0; batch_id < (unsigned)input_dims[0];
           batch_id++) {
        T prev_token = -1;
        size_t output_idx = 0;
        for (size_t i = 0; i < (unsigned)input_length_data[batch_id]; i++) {
          size_t input_ind = batch_id * input_dims[1] + i;
          if ((unsigned)input_data[input_ind] != blank &&
              !(merge_repeated && input_data[input_ind] == prev_token)) {
            output_data[batch_id * input_dims[1] + output_idx] =
                input_data[input_ind];
            ++output_idx;
          }
          prev_token = input_data[input_ind];
        }
        output_length_data[batch_id] = output_idx;
        for (size_t j = output_idx; j < (unsigned)input_dims[1]; j++)
          output_data[batch_id * input_dims[1] + j] = padding_value;
      }

如果是 lod 模式,调用 ToAbsOffset 得到偏移。

    } else {
      const size_t level = 0;
      auto input_lod = framework::ToAbsOffset(input->lod());

      // check input dims and lod
      PADDLE_ENFORCE_EQ(
          input_dims[0], static_cast<int64_t>(input_lod[level].back()),
          platform::errors::InvalidArgument(
              "The first dimension %d of CTCAlign operator Input(Input) should "
              "be equal to "
              "the sum of all sequences' lengths %d.",
              input_dims[0], static_cast<int64_t>(input_lod[level].back())));

      const size_t num_sequences = input_lod[level].size() - 1;

      // merge repeated tokens and delete blank
      size_t output_idx = 0;
      std::vector<size_t> output_lod0(1, 0);
      for (size_t seq_idx = 0; seq_idx < num_sequences; ++seq_idx) {
        T prev_token = -1;
        for (size_t i = input_lod[level][seq_idx];
             i < input_lod[level][seq_idx + 1]; ++i) {
          if ((unsigned)input_data[i] != blank &&
              !(merge_repeated && input_data[i] == prev_token)) {
            output_data[output_idx] = input_data[i];
            ++output_idx;
          }
          prev_token = input_data[i];
        }
        output_lod0.push_back(output_idx);
      }

      // set output lod
      framework::LoD output_lod;
      output_lod.push_back(output_lod0);
      output->set_lod(output_lod);
      // resize output dims
      output->Resize({static_cast<int64_t>(output_lod0.back()), 1});
      // for empty sequence
      if (output_lod0.back() == 0) {
        output->Resize({1, 1});
        output_data = output->mutable_data<T>(ctx.GetPlace());
        output_data[0] = -1;
      }
    }
  }
};

CTCAlignOpCUDAKernel

CTCAlignOpCUDAKernel::Compute
PaddingMergeAndDelCudaKernel
MergeAndDelCudaKernel

ExecutionContext::Input 根据名称返回地址。
ExecutionContext::Attr
LoDTensorDenseTensor 类型。

template <typename T>
class CTCAlignOpCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx.GetPlace()), true,
                      platform::errors::InvalidArgument(
                          "CTCAlign operator CUDA kernel must use CUDAPlace "
                          "rather than CPUPlace."));
    auto* input = ctx.Input<LoDTensor>("Input");
    auto* output = ctx.Output<LoDTensor>("Output");
    const int blank = ctx.Attr<int>("blank");
    const int merge_repeated =
        static_cast<int>(ctx.Attr<bool>("merge_repeated"));
    const T* tokens = input->data<T>();
    auto stream = ctx.cuda_device_context().stream();

DenseTensor::lod 返回 DenseTensorMeta 包含的 LoD 对象。
如果输入没有 Level-of-Detail,为普通 Tensor,调用 PaddingMergeAndDelCudaKernel 函数。
DenseTensor::mutable_data 返回数据指针。

    // tensor input which has no lod
    if (input->lod().empty()) {
      const int padding_value = ctx.Attr<int>("padding_value");
      auto input_dims = input->dims();
      T* output_data = output->mutable_data<T>({input_dims[0], input_dims[1]},
                                               ctx.GetPlace());
      auto* input_length = ctx.Input<LoDTensor>("InputLength");
      const T* input_length_data = input_length->data<T>();
      auto* output_length = ctx.Output<LoDTensor>("OutputLength");
      T* output_length_data =
          output_length->mutable_data<T>({input_dims[0], 1}, ctx.GetPlace());
      PaddingMergeAndDelCudaKernel<
          T><<<32, (input_dims[0] + 32 - 1) / 32, 0, stream>>>(
          input_dims[1], tokens, input_length_data, blank, merge_repeated,
          padding_value, input_dims[0], output_data, output_length_data);

否则调用 MergeAndDelCudaKernel 使用单线程合并删除。
ToAbsOffset 得到偏移。

    } else {
      const size_t level = 0;
      auto input_lod = framework::ToAbsOffset(input->lod());

      const int64_t num_tokens = input->dims()[0];
      const size_t num_seq = input_lod[level].size() - 1;

      // prepare a lod to record lod information while merging elements
      thrust::device_vector<size_t> dev_out_lod0(input_lod[level].size());
      size_t* dev_out_lod0_ptr = thrust::raw_pointer_cast(dev_out_lod0.data());

      // merge elements and delete blank
      T* output_data = output->mutable_data<T>({num_tokens, 1}, ctx.GetPlace());

      paddle::framework::MixVector<size_t> mixv_input_lod(&input_lod[level]);
      MergeAndDelCudaKernel<T><<<1, 1, 0, stream>>>(
          num_tokens, tokens, num_seq,
          mixv_input_lod.CUDAMutableData(ctx.GetPlace()), blank, merge_repeated,
          dev_out_lod0_ptr, output_data);
      mixv_input_lod.CopyToCPU();

      // set output lod
      std::vector<size_t> host_out_lod0(dev_out_lod0.begin(),
                                        dev_out_lod0.end());
      framework::LoD out_lod;
      out_lod.push_back(host_out_lod0);
      output->set_lod(out_lod);

      // resize output dims
      output->Resize({static_cast<int64_t>(host_out_lod0.back()), 1});

      if (host_out_lod0.back() == 0) {
        output->Resize({1, 1});
        output->mutable_data<T>(ctx.GetPlace());
        phi::funcs::SetConstant<platform::CUDADeviceContext, T> set_constant;
        set_constant(ctx.template device_context<platform::CUDADeviceContext>(),
                     output, -1);
      }
    }
  }
};

PaddingMergeAndDelCudaKernel

每个线程处理单个 batch。
如果tokens不是空白标签并且无需合并时,将数据赋值给输出。

template <typename T>
__global__ void PaddingMergeAndDelCudaKernel(
    const int64_t num_token, const T* tokens, const T* tokens_length,
    const int blank, const int merge_repeated, const int padding_value,
    const int64_t batch_size, T* output, T* output_length) {
  int ind = blockIdx.x * blockDim.x + threadIdx.x;
  if (ind >= batch_size) return;
  int output_idx = ind * num_token;
  T prev_token = -1;
  for (int i = ind * num_token; i < ind * num_token + tokens_length[ind]; i++) {
    if ((unsigned)tokens[i] != blank &&
        !(merge_repeated && tokens[i] == prev_token)) {
      output[output_idx] = tokens[i];
      ++output_idx;
    }
    prev_token = tokens[i];
  }

记录输出长度到output_length
末尾填充。

  output_length[ind] = output_idx - ind * num_token;
  for (int i = output_idx; i < ind * num_token + num_token; i++) {
    output[i] = padding_value;
  }
}

MergeAndDelCudaKernel

对于每个序列,通过lod0得到索引。
跳过空白标签以及需要合并的情况。
out_lod0记录序列起止点的累计索引。

template <typename T>
__global__ void MergeAndDelCudaKernel(const int64_t num_token, const T* tokens,
                                      const size_t num_seq, size_t* lod0,
                                      const int blank, const int merge_repeated,
                                      size_t* out_lod0, T* output) {
  int ouput_idx = 0;
  out_lod0[0] = 0;

  for (int i = 0; i < num_seq; ++i) {
    T pre_token = -1;
    for (int j = lod0[i]; j < lod0[i + 1]; ++j) {
      if (tokens[j] != blank && !(merge_repeated && tokens[j] == pre_token)) {
        output[ouput_idx] = tokens[j];
        ++ouput_idx;
      }
      pre_token = tokens[j];
    }
    out_lod0[i + 1] = ouput_idx;
  }
}

参考资料:

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-05-06 11:03:14  更:2022-05-06 11:05:33 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/4 15:15:57-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码