IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 【youcans 的 OpenCV 例程200篇】172.SLIC 超像素区域分割算法比较 -> 正文阅读

[人工智能]【youcans 的 OpenCV 例程200篇】172.SLIC 超像素区域分割算法比较

OpenCV 例程200篇 总目录-202205更新


【youcans 的 OpenCV 例程200篇】172.SLIC 超像素区域分割算法比较


5. 区域分割之聚类方法


5.3 SLIC 超像素区域分割

SLIC 基于网格化 K-means 聚类方法,原理简单,计算复杂度为O(N),N 为像素点个数。

SLIC 通常使用包含三个颜色分量和两个空间坐标的五维向量,例如 z = [ r , g , b , x , y ] T z=[r,g,b,x,y]^T z=[r,g,b,x,y]T。以均匀的规则网格取样点的初始的聚类中心,用 k-means 聚类算法计算出聚类中心和边界。

对彩色图像可以使用 RGB 颜色空间,也可以转化为 CIELab 或其它颜色空间。对于灰度图像,则使用灰度级与空间坐标构成的三维向量。

SLIC 算法能生成紧凑、近似均匀的超像素,在运算速度,物体轮廓保持、超像素形状方面具有较高的综合评价,比较符合人们期望的分割效果。

SLIC 的优点是:(1)生成的超像素紧凑整齐,邻域特征比较容易表达;(2)可以应用于彩色图像或灰度图像;(3)参数设置少,基本参数只有超像素数量;(4)运行速度、超像素紧凑度、轮廓保持都比较理想。


OpenCV 在 ximgproc 模块提供了 cv.ximgproc.createSuperpixelSLIC 函数实现SLIC算法。

该函数用于初始化输入图像的 SuperpixelSLIC 对象。它设置所选超级像素算法的参数,即:区域大小和标尺。它为给定图像上的未来计算迭代预先分配了一些缓冲区。对于最终结果,建议彩色图像使用一个小的3 x 3内核预处理具有少量高斯模糊的图像,并将其额外转换为CieLAB颜色空间。SLIC与SLICO和MSLIC的对比示例如下图所示。

函数说明:

cv.ximgproc.createSuperpixelSLIC(image[, algorithm=SLICO, region_size=10, ruler=10.0f]) → retval

参数说明:

  • image:原始图像
  • algorithm:选择算法
    • SLIC :使用所需的区域大小分割图像
    • SLICO :使用自适应紧致因子进行优化
    • MSLIC :使用流形方法进行优化
  • region_size:区域尺寸,以像素为单位的超像素大小,默认值 10
  • ruler:超像素的平滑因子,默认值 10

MSLIC 是对 SLIC 的优化,密集区域的超像素较小,稀疏区域的超像素较大,从而产生对内容更敏感的超像素。


例程 11.29: SLIC 超像素区域分割之算法比较

    # 11.29 SLIC 超像素区域分割之算法比较
    # 注意:本例程需要 opencv-contrib-python 包的支持
    img = cv2.imread("../images/imgLena.tif", flags=1)  # 读取彩色图像(BGR)
    imgHSV = cv2.cvtColor(img, cv2.COLOR_BGR2HSV_FULL)  # BGR-HSV 转换
    plt.figure(figsize=(9, 7))
    plt.subplot(221), plt.axis('off'), plt.title("Origin")
    plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))  # 显示 img1(RGB)

    algorithms = [
        ('SLIC', cv2.ximgproc.SLIC),  # 使用所需的区域大小分割图像
        ('SLICO', cv2.ximgproc.SLICO),  # 使用自适应紧致因子进行优化
        ('MSLIC', cv2.ximgproc.MSLIC)]  # 使用流形方法进行优化,产生对内容更敏感的超像素
    region_size = 20
    ruler = 10
    edgeColor = np.ones((img.shape[0], img.shape[1], 3), np.uint8) * 255
    for i in range(3):
        slic = cv2.ximgproc.createSuperpixelSLIC(imgHSV, algorithms[i][1], region_size, float(ruler))
        slic.iterate(5)  # 迭代次数,默认 10 次
        slic.enforceLabelConnectivity(100)  # 最小尺寸
        mask_slic = slic.getLabelContourMask()  # 获取Mask,超像素边缘Mask==1
        mask_color = np.array([mask_slic for i in range(3)]).transpose(1, 2, 0)  # 转为 3通道
        img_slic = cv2.bitwise_and(img, img, mask=cv2.bitwise_not(mask_slic))  # 在原图上绘制超像素边界

        plt.subplot(2,2,i+2), plt.axis('off'), plt.title("Slic ({})".format(algorithms[i][0]))
        plt.imshow(cv2.cvtColor(img_slic, cv2.COLOR_BGR2RGB))

    plt.tight_layout()
    plt.show()

在这里插入图片描述


(本节完)


版权声明:

OpenCV 例程200篇 总目录-202205更新
youcans@xupt 原创作品,转载必须标注原文链接:(https://blog.csdn.net/youcans/article/details/124576598)

Copyright 2022 youcans, XUPT
Crated:2022-5-4


欢迎关注 『youcans 的 OpenCV 例程 200 篇』 系列,持续更新中
欢迎关注 『youcans 的 OpenCV学习课』 系列,持续更新中

【youcans 的 OpenCV 例程200篇】147. 图像分割之孤立点检测
【youcans 的 OpenCV 例程200篇】148. 图像分割之线检测
【youcans 的 OpenCV 例程200篇】149. 图像分割之边缘模型
【youcans 的 OpenCV 例程200篇】150. 边缘检测梯度算子
【youcans 的 OpenCV 例程200篇】151. 边缘检测中的平滑处理
【youcans 的 OpenCV 例程200篇】152. 边缘检测之 LoG 算子
【youcans 的 OpenCV 例程200篇】153. 边缘检测之 DoG 算子
【youcans 的 OpenCV 例程200篇】154. 边缘检测之 Canny 算子
【youcans 的 OpenCV 例程200篇】155. 边缘连接的局部处理方法
【youcans 的 OpenCV 例程200篇】156. 边缘连接局部处理的简化算法
【youcans 的 OpenCV 例程200篇】157. 霍夫变换直线检测
【youcans 的 OpenCV 例程200篇】158. 阈值处理之固定阈值法
【youcans 的 OpenCV 例程200篇】159. 图像分割之全局阈值处理
【youcans 的 OpenCV 例程200篇】160. 图像处理之OTSU 方法
【youcans 的 OpenCV 例程200篇】161. OTSU 阈值处理算法的实现
【youcans 的 OpenCV 例程200篇】162. 全局阈值处理改进方法
【youcans 的 OpenCV 例程200篇】163. 基于边缘信息改进全局阈值处理
【youcans 的 OpenCV 例程200篇】164.使用 Laplace 边缘信息改进全局阈值处理
【youcans 的 OpenCV 例程200篇】165.多阈值 OTSU 处理方法
【youcans 的 OpenCV 例程200篇】166.自适应阈值处理
【youcans 的 OpenCV 例程200篇】167.基于移动平均的可变阈值处理
【youcans 的 OpenCV 例程200篇】168.图像分割之区域生长
【youcans 的 OpenCV 例程200篇】169.图像分割之区域分离
【youcans 的 OpenCV 例程200篇】170.图像分割之K均值聚类
【youcans 的 OpenCV 例程200篇】171.SLIC 超像素区域分割
【youcans 的 OpenCV 例程200篇】172.SLIC 超像素区域分割算法比较

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-05-07 11:11:00  更:2022-05-07 11:12:07 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/4 15:18:18-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码