IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 记录::c++ Opencv+Libtorch调用torch模型-图像分割 -> 正文阅读

[人工智能]记录::c++ Opencv+Libtorch调用torch模型-图像分割

前面用了keras的c++之后,将deeplabv3训练后用opencv readNetFromTensorflow导入模型报错:layer.add() 不能识别,想不明白为什么,也解决不了,放弃了,要是有大佬解决了求告知。

改为torch了,有现成的liborch库,下面是测试。

环境:

torch 1.11.0

libtorch 1.11.0 windows debug nocuda(和Python训练的torch同版本)

opencv 4.2.0.32

训练模型:https://github.com/bubbliiiing/deeplabv3-plus-pytorch

保存模型:

用上面链接正常训练。保存.pth文件后转换为pt文件

import torch
from nets.deeplabv3_plus import DeepLab
import cv2
import numpy as np
import torch.nn.functional as F
from PIL import Image

# 导入已经训练好的模型
num_classes = 21
backbone = "mobilenet"
pretrained = True
downsample_factor   = 16
input_shape = [512, 512]
model = DeepLab(num_classes=num_classes, backbone=backbone, downsample_factor=downsample_factor, pretrained=pretrained)

#保存模型
weight = torch.load('logs/ep001-loss0.709-val_loss0.889.pth')
model.load_state_dict(weight, strict=True)
model = model.eval()
# 注意模型输入的尺寸
example = torch.rand(1, 3, 512, 512)
traced_script_module = torch.jit.trace(model, example)
traced_script_module.save("logs/resout.pt")

opencv-python调用:

#读入图片
img_path = r"1.jpg"
save_path = r"logs\1.jpg"
module = torch.jit.load("logs/resout.pt")
image = cv2.imread(img_path)
orininal_h,orininal_w,_ = image.shape
image=cv2.resize(image, (512, 512))
image = image/255.0
image_data  = np.expand_dims(np.transpose((np.array(image, np.float32)), (2, 0, 1)), 0)
img_tensor = torch.from_numpy(image_data)

#模型计算以及保存结果
pr = module.forward(img_tensor)[0]
pr = F.softmax(pr.permute(1, 2, 0), dim=-1).cpu().detach().numpy()

pr = cv2.resize(pr, (orininal_w, orininal_h), interpolation=cv2.INTER_LINEAR)
pr = pr.argmax(axis=-1)
colors = [(0, 0, 0), (128, 0, 0), (0, 128, 0), (128, 128, 0), (0, 0, 128), (128, 0, 128), (0, 128, 128),
               (128, 128, 128), (64, 0, 0), (192, 0, 0), (64, 128, 0), (192, 128, 0), (64, 0, 128), (192, 0, 128),
               (64, 128, 128), (192, 128, 128), (0, 64, 0), (128, 64, 0), (0, 192, 0), (128, 192, 0), (0, 64, 128),
               (128, 64, 12)]
seg_img = np.reshape(np.array(colors, np.uint8)[np.reshape(pr, [-1])], [orininal_h, orininal_w, -1])
image = Image.fromarray(np.uint8(seg_img))
image.save(save_path)

C++ opencv调用

主要是图像分割模型的输入输出,捣鼓了好久,一个完整的例子。

#include <torch/script.h>
#include <opencv2/opencv.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <iostream>
#include <memory>

using namespace std;

int main()
{
	string model_path = "resout.pt";
	string img_path = "1.jpg";


	//载入模型 
	torch::jit::script::Module module;
	module = torch::jit::load(model_path);


	//输入图像
	cv::Mat image = cv::imread(img_path);
	int img_h = image.rows;
	int img_w = image.cols;
	int depth = image.channels();
	cv::Mat img_float;
	cv::cvtColor(image, image, cv::COLOR_BGR2RGB);
	cv::resize(image, image, cv::Size(512, 512));
	image.convertTo(image, CV_32FC3, 1.0f / 255.0f);
	auto img_tensor = torch::from_blob(image.data, { 1, 512, 512, depth });
	img_tensor = img_tensor.permute({ 0, 3, 1, 2 });


	//模型计算
	std::vector<torch::jit::IValue> inputs;
	torch::Tensor out;
	inputs.push_back(img_tensor);
	out = module.forward(std::move(inputs)).toTensor();

	//结果处理
	out = out[0];
	out = out.permute({ 1, 2, 0 }).detach();
	out = torch::softmax(out, 2);
	out = out.argmax(2);
	out = out.mul(10).clamp(0, 255).to(torch::kU8); 
	out = out.to(torch::kCPU);

	//保存图片
	int height, width;
	height = out.size(0);
	width = out.size(1);
	cv::Mat resultImg(cv::Size(512, 512), CV_8U, out.data_ptr()); // 将Tensor数据拷贝至Mat
	cv::resize(resultImg, resultImg, cv::Size(img_w, img_h));
	cv::imwrite("result.jpg", resultImg);

	
	return 0;
}

两个结果一致,还是得用库,唉,库还很大。

?

放在了这里面:

https://github.com/ziyaoma/Opencv-Tensorflow2.x/tree/main/torch

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-05-08 08:05:07  更:2022-05-08 08:09:22 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/4 15:01:23-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码