Deep Learning Chapter01:机器学习数学知识
好久不见,大家好,我是北山啦。机器学习当中需要用到许多的数学知识,如今博主又要继续踏上深度学习的路程,所以现在在网上总结了相关的考研数学和机器学习中常见相关知识如下,希望对大家有所帮助。
高等数学
1.导数定义:
导数和微分的概念
f
′
(
x
0
)
=
lim
?
Δ
x
→
0
?
f
(
x
0
+
Δ
x
)
?
f
(
x
0
)
Δ
x
f'({{x}_{0}})=\underset{\Delta x\to 0}{\mathop{\lim }}\,\frac{f({{x}_{0}}+\Delta x)-f({{x}_{0}})}{\Delta x}
f′(x0?)=Δx→0lim?Δxf(x0?+Δx)?f(x0?)? (1)
或者:
f
′
(
x
0
)
=
lim
?
x
→
x
0
?
f
(
x
)
?
f
(
x
0
)
x
?
x
0
f'({{x}_{0}})=\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{f(x)-f({{x}_{0}})}{x-{{x}_{0}}}
f′(x0?)=x→x0?lim?x?x0?f(x)?f(x0?)? (2)
2.左右导数导数的几何意义和物理意义
函数
f
(
x
)
f(x)
f(x)在
x
0
x_0
x0?处的左、右导数分别定义为:
左导数:
f
′
?
(
x
0
)
=
lim
?
Δ
x
→
0
?
?
f
(
x
0
+
Δ
x
)
?
f
(
x
0
)
Δ
x
=
lim
?
x
→
x
0
?
?
f
(
x
)
?
f
(
x
0
)
x
?
x
0
,
(
x
=
x
0
+
Δ
x
)
{{{f}'}_{-}}({{x}_{0}})=\underset{\Delta x\to {{0}^{-}}}{\mathop{\lim }}\,\frac{f({{x}_{0}}+\Delta x)-f({{x}_{0}})}{\Delta x}=\underset{x\to x_{0}^{-}}{\mathop{\lim }}\,\frac{f(x)-f({{x}_{0}})}{x-{{x}_{0}}},(x={{x}_{0}}+\Delta x)
f′??(x0?)=Δx→0?lim?Δxf(x0?+Δx)?f(x0?)?=x→x0??lim?x?x0?f(x)?f(x0?)?,(x=x0?+Δx)
右导数:
f
′
+
(
x
0
)
=
lim
?
Δ
x
→
0
+
?
f
(
x
0
+
Δ
x
)
?
f
(
x
0
)
Δ
x
=
lim
?
x
→
x
0
+
?
f
(
x
)
?
f
(
x
0
)
x
?
x
0
{{{f}'}_{+}}({{x}_{0}})=\underset{\Delta x\to {{0}^{+}}}{\mathop{\lim }}\,\frac{f({{x}_{0}}+\Delta x)-f({{x}_{0}})}{\Delta x}=\underset{x\to x_{0}^{+}}{\mathop{\lim }}\,\frac{f(x)-f({{x}_{0}})}{x-{{x}_{0}}}
f′+?(x0?)=Δx→0+lim?Δxf(x0?+Δx)?f(x0?)?=x→x0+?lim?x?x0?f(x)?f(x0?)?
3.函数的可导性与连续性之间的关系
Th1: 函数
f
(
x
)
f(x)
f(x)在
x
0
x_0
x0?处可微
?
f
(
x
)
\Leftrightarrow f(x)
?f(x)在
x
0
x_0
x0?处可导
Th2: 若函数在点
x
0
x_0
x0?处可导,则
y
=
f
(
x
)
y=f(x)
y=f(x)在点
x
0
x_0
x0?处连续,反之则不成立。即函数连续不一定可导。
Th3:
f
′
(
x
0
)
{f}'({{x}_{0}})
f′(x0?)存在
?
f
′
?
(
x
0
)
=
f
′
+
(
x
0
)
\Leftrightarrow {{{f}'}_{-}}({{x}_{0}})={{{f}'}_{+}}({{x}_{0}})
?f′??(x0?)=f′+?(x0?)
4.平面曲线的切线和法线
切线方程 :
y
?
y
0
=
f
′
(
x
0
)
(
x
?
x
0
)
y-{{y}_{0}}=f'({{x}_{0}})(x-{{x}_{0}})
y?y0?=f′(x0?)(x?x0?) 法线方程:
y
?
y
0
=
?
1
f
′
(
x
0
)
(
x
?
x
0
)
,
f
′
(
x
0
)
≠
0
y-{{y}_{0}}=-\frac{1}{f'({{x}_{0}})}(x-{{x}_{0}}),f'({{x}_{0}})\ne 0
y?y0?=?f′(x0?)1?(x?x0?),f′(x0?)?=0
5.四则运算法则 设函数
u
=
u
(
x
)
,
v
=
v
(
x
)
u=u(x),v=v(x)
u=u(x),v=v(x)]在点
x
x
x可导则 (1)
(
u
±
v
)
′
=
u
′
±
v
′
(u\pm v{)}'={u}'\pm {v}'
(u±v)′=u′±v′
d
(
u
±
v
)
=
d
u
±
d
v
d(u\pm v)=du\pm dv
d(u±v)=du±dv (2)
(
u
v
)
′
=
u
v
′
+
v
u
′
(uv{)}'=u{v}'+v{u}'
(uv)′=uv′+vu′
d
(
u
v
)
=
u
d
v
+
v
d
u
d(uv)=udv+vdu
d(uv)=udv+vdu (3)
(
u
v
)
′
=
v
u
′
?
u
v
′
v
2
(
v
≠
0
)
(\frac{u}{v}{)}'=\frac{v{u}'-u{v}'}{{{v}^{2}}}(v\ne 0)
(vu?)′=v2vu′?uv′?(v?=0)
d
(
u
v
)
=
v
d
u
?
u
d
v
v
2
d(\frac{u}{v})=\frac{vdu-udv}{{{v}^{2}}}
d(vu?)=v2vdu?udv?
6.基本导数与微分表 (1)
y
=
c
y=c
y=c(常数)
y
′
=
0
{y}'=0
y′=0
d
y
=
0
dy=0
dy=0 (2)
y
=
x
α
y={{x}^{\alpha }}
y=xα($\alpha $为实数)
y
′
=
α
x
α
?
1
{y}'=\alpha {{x}^{\alpha -1}}
y′=αxα?1
d
y
=
α
x
α
?
1
d
x
dy=\alpha {{x}^{\alpha -1}}dx
dy=αxα?1dx (3)
y
=
a
x
y={{a}^{x}}
y=ax
y
′
=
a
x
ln
?
a
{y}'={{a}^{x}}\ln a
y′=axlna
d
y
=
a
x
ln
?
a
d
x
dy={{a}^{x}}\ln adx
dy=axlnadx 特例:
(
e
x
)
′
=
e
x
({{{e}}^{x}}{)}'={{{e}}^{x}}
(ex)′=ex
d
(
e
x
)
=
e
x
d
x
d({{{e}}^{x}})={{{e}}^{x}}dx
d(ex)=exdx
(4)
y
=
log
?
a
x
y={{\log }_{a}}x
y=loga?x
y
′
=
1
x
ln
?
a
{y}'=\frac{1}{x\ln a}
y′=xlna1?
d
y
=
1
x
ln
?
a
d
x
dy=\frac{1}{x\ln a}dx
dy=xlna1?dx 特例:
y
=
ln
?
x
y=\ln x
y=lnx
(
ln
?
x
)
′
=
1
x
(\ln x{)}'=\frac{1}{x}
(lnx)′=x1?
d
(
ln
?
x
)
=
1
x
d
x
d(\ln x)=\frac{1}{x}dx
d(lnx)=x1?dx
(5)
y
=
sin
?
x
y=\sin x
y=sinx
y
′
=
cos
?
x
{y}'=\cos x
y′=cosx
d
(
sin
?
x
)
=
cos
?
x
d
x
d(\sin x)=\cos xdx
d(sinx)=cosxdx
(6)
y
=
cos
?
x
y=\cos x
y=cosx
y
′
=
?
sin
?
x
{y}'=-\sin x
y′=?sinx
d
(
cos
?
x
)
=
?
sin
?
x
d
x
d(\cos x)=-\sin xdx
d(cosx)=?sinxdx
(7)
y
=
tan
?
x
y=\tan x
y=tanx
y
′
=
1
cos
?
2
x
=
sec
?
2
x
{y}'=\frac{1}{{{\cos }^{2}}x}={{\sec }^{2}}x
y′=cos2x1?=sec2x
d
(
tan
?
x
)
=
sec
?
2
x
d
x
d(\tan x)={{\sec }^{2}}xdx
d(tanx)=sec2xdx (8)
y
=
cot
?
x
y=\cot x
y=cotx
y
′
=
?
1
sin
?
2
x
=
?
csc
?
2
x
{y}'=-\frac{1}{{{\sin }^{2}}x}=-{{\csc }^{2}}x
y′=?sin2x1?=?csc2x
d
(
cot
?
x
)
=
?
csc
?
2
x
d
x
d(\cot x)=-{{\csc }^{2}}xdx
d(cotx)=?csc2xdx (9)
y
=
sec
?
x
y=\sec x
y=secx
y
′
=
sec
?
x
tan
?
x
{y}'=\sec x\tan x
y′=secxtanx
d
(
sec
?
x
)
=
sec
?
x
tan
?
x
d
x
d(\sec x)=\sec x\tan xdx
d(secx)=secxtanxdx (10)
y
=
csc
?
x
y=\csc x
y=cscx
y
′
=
?
csc
?
x
cot
?
x
{y}'=-\csc x\cot x
y′=?cscxcotx
d
(
csc
?
x
)
=
?
csc
?
x
cot
?
x
d
x
d(\csc x)=-\csc x\cot xdx
d(cscx)=?cscxcotxdx (11)
y
=
arcsin
?
x
y=\arcsin x
y=arcsinx
y
′
=
1
1
?
x
2
{y}'=\frac{1}{\sqrt{1-{{x}^{2}}}}
y′=1?x2
?1?
d
(
arcsin
?
x
)
=
1
1
?
x
2
d
x
d(\arcsin x)=\frac{1}{\sqrt{1-{{x}^{2}}}}dx
d(arcsinx)=1?x2
?1?dx (12)
y
=
arccos
?
x
y=\arccos x
y=arccosx
y
′
=
?
1
1
?
x
2
{y}'=-\frac{1}{\sqrt{1-{{x}^{2}}}}
y′=?1?x2
?1?
d
(
arccos
?
x
)
=
?
1
1
?
x
2
d
x
d(\arccos x)=-\frac{1}{\sqrt{1-{{x}^{2}}}}dx
d(arccosx)=?1?x2
?1?dx
(13)
y
=
arctan
?
x
y=\arctan x
y=arctanx
y
′
=
1
1
+
x
2
{y}'=\frac{1}{1+{{x}^{2}}}
y′=1+x21?
d
(
arctan
?
x
)
=
1
1
+
x
2
d
x
d(\arctan x)=\frac{1}{1+{{x}^{2}}}dx
d(arctanx)=1+x21?dx
(14)
y
=
arc
?
cot
?
x
y=\operatorname{arc}\cot x
y=arccotx
y
′
=
?
1
1
+
x
2
{y}'=-\frac{1}{1+{{x}^{2}}}
y′=?1+x21?
d
(
arc
?
cot
?
x
)
=
?
1
1
+
x
2
d
x
d(\operatorname{arc}\cot x)=-\frac{1}{1+{{x}^{2}}}dx
d(arccotx)=?1+x21?dx (15)
y
=
s
h
x
y=shx
y=shx
y
′
=
c
h
x
{y}'=chx
y′=chx
d
(
s
h
x
)
=
c
h
x
d
x
d(shx)=chxdx
d(shx)=chxdx
(16)
y
=
c
h
x
y=chx
y=chx
y
′
=
s
h
x
{y}'=shx
y′=shx
d
(
c
h
x
)
=
s
h
x
d
x
d(chx)=shxdx
d(chx)=shxdx
7.复合函数,反函数,隐函数以及参数方程所确定的函数的微分法
(1) 反函数的运算法则: 设
y
=
f
(
x
)
y=f(x)
y=f(x)在点
x
x
x的某邻域内单调连续,在点
x
x
x处可导且
f
′
(
x
)
≠
0
{f}'(x)\ne 0
f′(x)?=0,则其反函数在点
x
x
x所对应的
y
y
y处可导,并且有
d
y
d
x
=
1
d
x
d
y
\frac{dy}{dx}=\frac{1}{\frac{dx}{dy}}
dxdy?=dydx?1? (2) 复合函数的运算法则:若
μ
=
φ
(
x
)
\mu =\varphi (x)
μ=φ(x)在点
x
x
x可导,而
y
=
f
(
μ
)
y=f(\mu )
y=f(μ)在对应点$\mu
(
(
(\mu =\varphi (x)
)
可
导
,
则
复
合
函
数
)可导,则复合函数
)可导,则复合函数y=f(\varphi (x))
在
点
在点
在点x
可
导
,
且
可导,且
可导,且{y}‘={f}’(\mu )\cdot {\varphi }'(x)$ (3) 隐函数导数
d
y
d
x
\frac{dy}{dx}
dxdy?的求法一般有三种方法: 1)方程两边对
x
x
x求导,要记住
y
y
y是
x
x
x的函数,则
y
y
y的函数是
x
x
x的复合函数.例如
1
y
\frac{1}{y}
y1?,
y
2
{{y}^{2}}
y2,
l
n
y
ln y
lny,
e
y
{{{e}}^{y}}
ey等均是
x
x
x的复合函数. 对
x
x
x求导应按复合函数连锁法则做. 2)公式法.由
F
(
x
,
y
)
=
0
F(x,y)=0
F(x,y)=0知
d
y
d
x
=
?
F
′
x
(
x
,
y
)
F
′
y
(
x
,
y
)
\frac{dy}{dx}=-\frac{{{{{F}'}}_{x}}(x,y)}{{{{{F}'}}_{y}}(x,y)}
dxdy?=?F′y?(x,y)F′x?(x,y)?,其中,
F
′
x
(
x
,
y
)
{{{F}'}_{x}}(x,y)
F′x?(x,y),
F
′
y
(
x
,
y
)
{{{F}'}_{y}}(x,y)
F′y?(x,y)分别表示
F
(
x
,
y
)
F(x,y)
F(x,y)对
x
x
x和
y
y
y的偏导数 3)利用微分形式不变性
8.常用高阶导数公式
(1)
(
a
x
)
?
(
n
)
=
a
x
ln
?
n
a
(
a
>
0
)
(
e
x
)
?
(
n
)
=
e
?
x
({{a}^{x}}){{\,}^{(n)}}={{a}^{x}}{{\ln }^{n}}a\quad (a>{0})\quad \quad ({{{e}}^{x}}){{\,}^{(n)}}={e}{{\,}^{x}}
(ax)(n)=axlnna(a>0)(ex)(n)=ex (2)
(
sin
?
k
x
)
?
(
n
)
=
k
n
sin
?
(
k
x
+
n
?
π
2
)
(\sin kx{)}{{\,}^{(n)}}={{k}^{n}}\sin (kx+n\cdot \frac{\pi }{{2}})
(sinkx)(n)=knsin(kx+n?2π?) (3)
(
cos
?
k
x
)
?
(
n
)
=
k
n
cos
?
(
k
x
+
n
?
π
2
)
(\cos kx{)}{{\,}^{(n)}}={{k}^{n}}\cos (kx+n\cdot \frac{\pi }{{2}})
(coskx)(n)=kncos(kx+n?2π?) (4)
(
x
m
)
?
(
n
)
=
m
(
m
?
1
)
?
(
m
?
n
+
1
)
x
m
?
n
({{x}^{m}}){{\,}^{(n)}}=m(m-1)\cdots (m-n+1){{x}^{m-n}}
(xm)(n)=m(m?1)?(m?n+1)xm?n (5)
(
ln
?
x
)
?
(
n
)
=
(
?
1
)
(
n
?
1
)
(
n
?
1
)
!
x
n
(\ln x){{\,}^{(n)}}={{(-{1})}^{(n-{1})}}\frac{(n-{1})!}{{{x}^{n}}}
(lnx)(n)=(?1)(n?1)xn(n?1)!? (6)莱布尼兹公式:若
u
(
x
)
?
,
v
(
x
)
u(x)\,,v(x)
u(x),v(x)均
n
n
n阶可导,则
(
u
v
)
(
n
)
=
∑
i
=
0
n
c
n
i
u
(
i
)
v
(
n
?
i
)
{{(uv)}^{(n)}}=\sum\limits_{i={0}}^{n}{c_{n}^{i}{{u}^{(i)}}{{v}^{(n-i)}}}
(uv)(n)=i=0∑n?cni?u(i)v(n?i),其中
u
(
0
)
=
u
{{u}^{({0})}}=u
u(0)=u,
v
(
0
)
=
v
{{v}^{({0})}}=v
v(0)=v
9.微分中值定理,泰勒公式
Th1:(费马定理)
若函数
f
(
x
)
f(x)
f(x)满足条件: (1)函数
f
(
x
)
f(x)
f(x)在
x
0
{{x}_{0}}
x0?的某邻域内有定义,并且在此邻域内恒有
f
(
x
)
≤
f
(
x
0
)
f(x)\le f({{x}_{0}})
f(x)≤f(x0?)或
f
(
x
)
≥
f
(
x
0
)
f(x)\ge f({{x}_{0}})
f(x)≥f(x0?),
(2)
f
(
x
)
f(x)
f(x)在
x
0
{{x}_{0}}
x0?处可导,则有
f
′
(
x
0
)
=
0
{f}'({{x}_{0}})=0
f′(x0?)=0
Th2:(罗尔定理)
设函数
f
(
x
)
f(x)
f(x)满足条件: (1)在闭区间
[
a
,
b
]
[a,b]
[a,b]上连续;
(2)在
(
a
,
b
)
(a,b)
(a,b)内可导;
(3)
f
(
a
)
=
f
(
b
)
f(a)=f(b)
f(a)=f(b);
则在
(
a
,
b
)
(a,b)
(a,b)内一存在个$\xi $,使
f
′
(
ξ
)
=
0
{f}'(\xi )=0
f′(ξ)=0 Th3: (拉格朗日中值定理)
设函数
f
(
x
)
f(x)
f(x)满足条件: (1)在
[
a
,
b
]
[a,b]
[a,b]上连续;
(2)在
(
a
,
b
)
(a,b)
(a,b)内可导;
则在
(
a
,
b
)
(a,b)
(a,b)内一存在个$\xi $,使
f
(
b
)
?
f
(
a
)
b
?
a
=
f
′
(
ξ
)
\frac{f(b)-f(a)}{b-a}={f}'(\xi )
b?af(b)?f(a)?=f′(ξ)
Th4: (柯西中值定理)
设函数
f
(
x
)
f(x)
f(x),
g
(
x
)
g(x)
g(x)满足条件: (1) 在
[
a
,
b
]
[a,b]
[a,b]上连续;
(2) 在
(
a
,
b
)
(a,b)
(a,b)内可导且
f
′
(
x
)
{f}'(x)
f′(x),
g
′
(
x
)
{g}'(x)
g′(x)均存在,且
g
′
(
x
)
≠
0
{g}'(x)\ne 0
g′(x)?=0
则在
(
a
,
b
)
(a,b)
(a,b)内存在一个$\xi $,使
f
(
b
)
?
f
(
a
)
g
(
b
)
?
g
(
a
)
=
f
′
(
ξ
)
g
′
(
ξ
)
\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{{f}'(\xi )}{{g}'(\xi )}
g(b)?g(a)f(b)?f(a)?=g′(ξ)f′(ξ)?
10.洛必达法则 法则Ⅰ (
0
0
\frac{0}{0}
00?型) 设函数
f
(
x
)
,
g
(
x
)
f\left( x \right),g\left( x \right)
f(x),g(x)满足条件:
lim
?
x
→
x
0
?
f
(
x
)
=
0
,
lim
?
x
→
x
0
?
g
(
x
)
=
0
\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,f\left( x \right)=0,\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,g\left( x \right)=0
x→x0?lim?f(x)=0,x→x0?lim?g(x)=0;
f
(
x
)
,
g
(
x
)
f\left( x \right),g\left( x \right)
f(x),g(x)在
x
0
{{x}_{0}}
x0?的邻域内可导,(在
x
0
{{x}_{0}}
x0?处可除外)且
g
′
(
x
)
≠
0
{g}'\left( x \right)\ne 0
g′(x)?=0;
lim
?
x
→
x
0
?
f
′
(
x
)
g
′
(
x
)
\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{{f}'\left( x \right)}{{g}'\left( x \right)}
x→x0?lim?g′(x)f′(x)?存在(或$\infty $)。
则:
lim
?
x
→
x
0
?
f
(
x
)
g
(
x
)
=
lim
?
x
→
x
0
?
f
′
(
x
)
g
′
(
x
)
\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{f\left( x \right)}{g\left( x \right)}=\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{{f}'\left( x \right)}{{g}'\left( x \right)}
x→x0?lim?g(x)f(x)?=x→x0?lim?g′(x)f′(x)?。 法则
I
′
{{I}'}
I′ (
0
0
\frac{0}{0}
00?型)设函数
f
(
x
)
,
g
(
x
)
f\left( x \right),g\left( x \right)
f(x),g(x)满足条件:
lim
?
x
→
∞
?
f
(
x
)
=
0
,
lim
?
x
→
∞
?
g
(
x
)
=
0
\underset{x\to \infty }{\mathop{\lim }}\,f\left( x \right)=0,\underset{x\to \infty }{\mathop{\lim }}\,g\left( x \right)=0
x→∞lim?f(x)=0,x→∞lim?g(x)=0;
11.泰勒公式
n
n
n阶泰勒公式
f
(
x
)
=
f
(
0
)
+
f
′
(
0
)
x
+
1
2
!
f
′
′
(
0
)
x
2
+
?
+
f
(
n
)
(
0
)
n
!
x
n
+
R
n
(
x
)
f(x)=f(0)+{f}'(0)x+\frac{1}{2!}{f}''(0){{x}^{2}}+\cdots +\frac{{{f}^{(n)}}(0)}{n!}{{x}^{n}}+{{R}_{n}}(x)
f(x)=f(0)+f′(0)x+2!1?f′′(0)x2+?+n!f(n)(0)?xn+Rn?(x)……(1) 其中
R
n
(
x
)
=
f
(
n
+
1
)
(
ξ
)
(
n
+
1
)
!
x
n
+
1
{{R}_{n}}(x)=\frac{{{f}^{(n+1)}}(\xi )}{(n+1)!}{{x}^{n+1}}
Rn?(x)=(n+1)!f(n+1)(ξ)?xn+1,$\xi
在
0
与
在0与
在0与x$之间.(1)式称为麦克劳林公式
常用五种函数在
x
0
=
0
{{x}_{0}}=0
x0?=0处的泰勒公式
(1)
e
x
=
1
+
x
+
1
2
!
x
2
+
?
+
1
n
!
x
n
+
x
n
+
1
(
n
+
1
)
!
e
ξ
{{{e}}^{x}}=1+x+\frac{1}{2!}{{x}^{2}}+\cdots +\frac{1}{n!}{{x}^{n}}+\frac{{{x}^{n+1}}}{(n+1)!}{{e}^{\xi }}
ex=1+x+2!1?x2+?+n!1?xn+(n+1)!xn+1?eξ
或
=
1
+
x
+
1
2
!
x
2
+
?
+
1
n
!
x
n
+
o
(
x
n
)
=1+x+\frac{1}{2!}{{x}^{2}}+\cdots +\frac{1}{n!}{{x}^{n}}+o({{x}^{n}})
=1+x+2!1?x2+?+n!1?xn+o(xn)
(2)
sin
?
x
=
x
?
1
3
!
x
3
+
?
+
x
n
n
!
sin
?
n
π
2
+
x
n
+
1
(
n
+
1
)
!
sin
?
(
ξ
+
n
+
1
2
π
)
\sin x=x-\frac{1}{3!}{{x}^{3}}+\cdots +\frac{{{x}^{n}}}{n!}\sin \frac{n\pi }{2}+\frac{{{x}^{n+1}}}{(n+1)!}\sin (\xi +\frac{n+1}{2}\pi )
sinx=x?3!1?x3+?+n!xn?sin2nπ?+(n+1)!xn+1?sin(ξ+2n+1?π)
或
=
x
?
1
3
!
x
3
+
?
+
x
n
n
!
sin
?
n
π
2
+
o
(
x
n
)
=x-\frac{1}{3!}{{x}^{3}}+\cdots +\frac{{{x}^{n}}}{n!}\sin \frac{n\pi }{2}+o({{x}^{n}})
=x?3!1?x3+?+n!xn?sin2nπ?+o(xn)
(3)
cos
?
x
=
1
?
1
2
!
x
2
+
?
+
x
n
n
!
cos
?
n
π
2
+
x
n
+
1
(
n
+
1
)
!
cos
?
(
ξ
+
n
+
1
2
π
)
\cos x=1-\frac{1}{2!}{{x}^{2}}+\cdots +\frac{{{x}^{n}}}{n!}\cos \frac{n\pi }{2}+\frac{{{x}^{n+1}}}{(n+1)!}\cos (\xi +\frac{n+1}{2}\pi )
cosx=1?2!1?x2+?+n!xn?cos2nπ?+(n+1)!xn+1?cos(ξ+2n+1?π)
或
=
1
?
1
2
!
x
2
+
?
+
x
n
n
!
cos
?
n
π
2
+
o
(
x
n
)
=1-\frac{1}{2!}{{x}^{2}}+\cdots +\frac{{{x}^{n}}}{n!}\cos \frac{n\pi }{2}+o({{x}^{n}})
=1?2!1?x2+?+n!xn?cos2nπ?+o(xn)
(4)
ln
?
(
1
+
x
)
=
x
?
1
2
x
2
+
1
3
x
3
?
?
+
(
?
1
)
n
?
1
x
n
n
+
(
?
1
)
n
x
n
+
1
(
n
+
1
)
(
1
+
ξ
)
n
+
1
\ln (1+x)=x-\frac{1}{2}{{x}^{2}}+\frac{1}{3}{{x}^{3}}-\cdots +{{(-1)}^{n-1}}\frac{{{x}^{n}}}{n}+\frac{{{(-1)}^{n}}{{x}^{n+1}}}{(n+1){{(1+\xi )}^{n+1}}}
ln(1+x)=x?21?x2+31?x3??+(?1)n?1nxn?+(n+1)(1+ξ)n+1(?1)nxn+1?
或
=
x
?
1
2
x
2
+
1
3
x
3
?
?
+
(
?
1
)
n
?
1
x
n
n
+
o
(
x
n
)
=x-\frac{1}{2}{{x}^{2}}+\frac{1}{3}{{x}^{3}}-\cdots +{{(-1)}^{n-1}}\frac{{{x}^{n}}}{n}+o({{x}^{n}})
=x?21?x2+31?x3??+(?1)n?1nxn?+o(xn)
(5)
(
1
+
x
)
m
=
1
+
m
x
+
m
(
m
?
1
)
2
!
x
2
+
?
+
m
(
m
?
1
)
?
(
m
?
n
+
1
)
n
!
x
n
{{(1+x)}^{m}}=1+mx+\frac{m(m-1)}{2!}{{x}^{2}}+\cdots +\frac{m(m-1)\cdots (m-n+1)}{n!}{{x}^{n}}
(1+x)m=1+mx+2!m(m?1)?x2+?+n!m(m?1)?(m?n+1)?xn
+
m
(
m
?
1
)
?
(
m
?
n
+
1
)
(
n
+
1
)
!
x
n
+
1
(
1
+
ξ
)
m
?
n
?
1
+\frac{m(m-1)\cdots (m-n+1)}{(n+1)!}{{x}^{n+1}}{{(1+\xi )}^{m-n-1}}
+(n+1)!m(m?1)?(m?n+1)?xn+1(1+ξ)m?n?1
或 ${{(1+x)}{m}}=1+mx+\frac{m(m-1)}{2!}{{x}{2}}+\cdots $
+
m
(
m
?
1
)
?
(
m
?
n
+
1
)
n
!
x
n
+
o
(
x
n
)
+\frac{m(m-1)\cdots (m-n+1)}{n!}{{x}^{n}}+o({{x}^{n}})
+n!m(m?1)?(m?n+1)?xn+o(xn)
12.函数单调性的判断 Th1: 设函数
f
(
x
)
f(x)
f(x)在
(
a
,
b
)
(a,b)
(a,b)区间内可导,如果对
?
x
∈
(
a
,
b
)
\forall x\in (a,b)
?x∈(a,b),都有
f
?
′
(
x
)
>
0
f\,'(x)>0
f′(x)>0(或
f
?
′
(
x
)
<
0
f\,'(x)<0
f′(x)<0),则函数
f
(
x
)
f(x)
f(x)在
(
a
,
b
)
(a,b)
(a,b)内是单调增加的(或单调减少)
Th2: (取极值的必要条件)设函数
f
(
x
)
f(x)
f(x)在
x
0
{{x}_{0}}
x0?处可导,且在
x
0
{{x}_{0}}
x0?处取极值,则
f
?
′
(
x
0
)
=
0
f\,'({{x}_{0}})=0
f′(x0?)=0。
Th3: (取极值的第一充分条件)设函数
f
(
x
)
f(x)
f(x)在
x
0
{{x}_{0}}
x0?的某一邻域内可微,且
f
?
′
(
x
0
)
=
0
f\,'({{x}_{0}})=0
f′(x0?)=0(或
f
(
x
)
f(x)
f(x)在
x
0
{{x}_{0}}
x0?处连续,但
f
?
′
(
x
0
)
f\,'({{x}_{0}})
f′(x0?)不存在。) (1)若当
x
x
x经过
x
0
{{x}_{0}}
x0?时,
f
?
′
(
x
)
f\,'(x)
f′(x)由“+”变“-”,则
f
(
x
0
)
f({{x}_{0}})
f(x0?)为极大值; (2)若当
x
x
x经过
x
0
{{x}_{0}}
x0?时,
f
?
′
(
x
)
f\,'(x)
f′(x)由“-”变“+”,则
f
(
x
0
)
f({{x}_{0}})
f(x0?)为极小值; (3)若
f
?
′
(
x
)
f\,'(x)
f′(x)经过
x
=
x
0
x={{x}_{0}}
x=x0?的两侧不变号,则
f
(
x
0
)
f({{x}_{0}})
f(x0?)不是极值。
Th4: (取极值的第二充分条件)设
f
(
x
)
f(x)
f(x)在点
x
0
{{x}_{0}}
x0?处有
f
′
′
(
x
)
≠
0
f''(x)\ne 0
f′′(x)?=0,且
f
?
′
(
x
0
)
=
0
f\,'({{x}_{0}})=0
f′(x0?)=0,则 当
f
′
?
′
(
x
0
)
<
0
f'\,'({{x}_{0}})<0
f′′(x0?)<0时,
f
(
x
0
)
f({{x}_{0}})
f(x0?)为极大值; 当
f
′
?
′
(
x
0
)
>
0
f'\,'({{x}_{0}})>0
f′′(x0?)>0时,
f
(
x
0
)
f({{x}_{0}})
f(x0?)为极小值。 注:如果
f
′
?
′
(
x
0
)
<
0
f'\,'({{x}_{0}})<0
f′′(x0?)<0,此方法失效。
13.渐近线的求法 (1)水平渐近线 若
lim
?
x
→
+
∞
?
f
(
x
)
=
b
\underset{x\to +\infty }{\mathop{\lim }}\,f(x)=b
x→+∞lim?f(x)=b,或
lim
?
x
→
?
∞
?
f
(
x
)
=
b
\underset{x\to -\infty }{\mathop{\lim }}\,f(x)=b
x→?∞lim?f(x)=b,则
y
=
b
y=b
y=b称为函数
y
=
f
(
x
)
y=f(x)
y=f(x)的水平渐近线。
(2)铅直渐近线 若$\underset{x\to x_{0}^{-}}{\mathop{\lim }},f(x)=\infty
,
或
,或
,或\underset{x\to x_{0}^{+}}{\mathop{\lim }},f(x)=\infty $,则
x
=
x
0
x={{x}_{0}}
x=x0?称为
y
=
f
(
x
)
y=f(x)
y=f(x)的铅直渐近线。
(3)斜渐近线 若
a
=
lim
?
x
→
∞
?
f
(
x
)
x
,
b
=
lim
?
x
→
∞
?
[
f
(
x
)
?
a
x
]
a=\underset{x\to \infty }{\mathop{\lim }}\,\frac{f(x)}{x},\quad b=\underset{x\to \infty }{\mathop{\lim }}\,[f(x)-ax]
a=x→∞lim?xf(x)?,b=x→∞lim?[f(x)?ax],则
y
=
a
x
+
b
y=ax+b
y=ax+b称为
y
=
f
(
x
)
y=f(x)
y=f(x)的斜渐近线。
14.函数凹凸性的判断 Th1: (凹凸性的判别定理)若在I上
f
′
′
(
x
)
<
0
f''(x)<0
f′′(x)<0(或
f
′
′
(
x
)
>
0
f''(x)>0
f′′(x)>0),则
f
(
x
)
f(x)
f(x)在I上是凸的(或凹的)。
Th2: (拐点的判别定理1)若在
x
0
{{x}_{0}}
x0?处
f
′
′
(
x
)
=
0
f''(x)=0
f′′(x)=0,(或
f
′
′
(
x
)
f''(x)
f′′(x)不存在),当
x
x
x变动经过
x
0
{{x}_{0}}
x0?时,
f
′
′
(
x
)
f''(x)
f′′(x)变号,则
(
x
0
,
f
(
x
0
)
)
({{x}_{0}},f({{x}_{0}}))
(x0?,f(x0?))为拐点。
Th3: (拐点的判别定理2)设
f
(
x
)
f(x)
f(x)在
x
0
{{x}_{0}}
x0?点的某邻域内有三阶导数,且
f
′
′
(
x
)
=
0
f''(x)=0
f′′(x)=0,
f
′
′
′
(
x
)
≠
0
f'''(x)\ne 0
f′′′(x)?=0,则
(
x
0
,
f
(
x
0
)
)
({{x}_{0}},f({{x}_{0}}))
(x0?,f(x0?))为拐点。
15.弧微分
d
S
=
1
+
y
′
2
d
x
dS=\sqrt{1+y{{'}^{2}}}dx
dS=1+y′2
?dx
16.曲率
曲线
y
=
f
(
x
)
y=f(x)
y=f(x)在点
(
x
,
y
)
(x,y)
(x,y)处的曲率
k
=
∣
y
′
′
∣
(
1
+
y
′
2
)
3
2
k=\frac{\left| y'' \right|}{{{(1+y{{'}^{2}})}^{\tfrac{3}{2}}}}
k=(1+y′2)23?∣y′′∣?。 对于参数方程KaTeX parse error: No such environment: align at position 15: \left\{ \begin{?a?l?i?g?n?}? & x=\varphi (…
k
=
∣
φ
′
(
t
)
ψ
′
′
(
t
)
?
φ
′
′
(
t
)
ψ
′
(
t
)
∣
[
φ
′
2
(
t
)
+
ψ
′
2
(
t
)
]
3
2
k=\frac{\left| \varphi '(t)\psi ''(t)-\varphi ''(t)\psi '(t) \right|}{{{[\varphi {{'}^{2}}(t)+\psi {{'}^{2}}(t)]}^{\tfrac{3}{2}}}}
k=[φ′2(t)+ψ′2(t)]23?∣φ′(t)ψ′′(t)?φ′′(t)ψ′(t)∣?。
17.曲率半径
曲线在点
M
M
M处的曲率
k
(
k
≠
0
)
k(k\ne 0)
k(k?=0)与曲线在点
M
M
M处的曲率半径$\rho
有
如
下
关
系
:
有如下关系:
有如下关系:\rho =\frac{1}{k}$。
到这里就结束了,如果对你有帮助,欢迎点赞关注评论,你的点赞对我很重要
|