IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 【Pytorch】torch.gather用法详解 -> 正文阅读

[人工智能]【Pytorch】torch.gather用法详解

torch.gather

torch.gather(input, dim, index, *, sparse_grad=False, out=None)

沿指定的维收集值。

参数:

  • input (Tensor) –输入张量

  • dim (int) – 要索引的维

  • index (LongTensor) – 要收集的元素的索引

  • sparse_grad (bool, optional) – 如果为True,关于input 的梯度将是稀疏张量。

  • out (Tensor, optional) –输出张量

对于一维张量,输出由以下公式指定:

out[i] = input[index[i]]  # dim= 0

例如:

input_tensor= torch.tensor([1, 2])
index = torch.tensor([0, 0])
input[0]=1
input[1]=2

index[0]=0
index[0]=0
out = torch.gather(input, 0, index)
out[0]=input[index[0]]=input[0]=1
out[1]=input[index[1]]=input[0]=1

对于二维张量,输出由以下公式指定:

out[i][j] = input[index[i][j]][j]  # if dim == 0
out[i][j] = input[i][index[i][j]]  # if dim == 1

举个栗子:

input_tensor= torch.tensor([[1, 2], [3, 4]])
index = torch.tensor([[0, 0], [1, 0]])
input[0][0]=1
input[0][1]=2
input[1][0]=3
input[1][1]=4

index[0][0]=0
index[0][1]=0
index[1][0]=1
index[1][1]=0

dim=0:

out = torch.gather(input, 0, torch.tensor([[0, 0], [1, 0]]))
print(out)
out[0][0]=input[index[0][0]][0]=input[0][0]=1
out[0][1]=input[index[0][1]][1]=input[0][1]=2
out[1][0]=input[index[1][0]][0]=input[1][0]=3
out[1][1]=input[index[1][1]][1]=input[0][1]=2

dim=1:

out = torch.gather(input, 1, torch.tensor([[0, 0], [1, 0]]))
print(out)
out[0][0]=input[0][index[0][0]]=input[0][0]=1
out[0][1]=input[0][index[0][1]]=input[0][0]=1
out[1][0]=input[1][index[1][0]]=input[1][1]=4
out[1][1]=input[1][index[1][1]]=input[1][0]=3

对于三维张量,同理:

out[i][j][k] = input[index[i][j][k]][j][k]  # if dim == 0
out[i][j][k] = input[i][index[i][j][k]][k]  # if dim == 1
out[i][j][k] = input[i][j][index[i][j][k]]  # if dim == 2

注意inputindex必须有相同的维度。out尺寸和index相同;inputindex之间不会广播。

对于d=dim,可以有index.size(d)< input.size(d)

input_tensor = torch.tensor([[1, 2, 3], [4, 5, 6]])
index = torch.tensor([[1, 0],[2, 0]])
print('input_tensor.size:', input_tensor.size())
print('index.size:', index.size())
out = torch.gather(input_tensor, 1, index)
print(out)
input_tensor.size: torch.Size([2, 3])
index.size: torch.Size([2, 2])
tensor([[2, 1],
        [6, 4]])

index.size(d)> input.size(d)

input_tensor = torch.tensor([[1, 2, 3], [4, 5, 6]])
index = torch.tensor([[1, 0, 1, 0], [2, 0, 2, 0]])
print('input_tensor.size:', input_tensor.size())
print('index.size:', index.size())
out = torch.gather(input_tensor, 1, index)
print(out)

input_tensor.size: torch.Size([2, 3])
index.size: torch.Size([2, 4])
tensor([[2, 1, 2, 1],
        [6, 4, 6, 4]])
  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2022-05-09 12:39:40  更:2022-05-09 12:42:44 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/26 6:49:57-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码